login
A346109
a(n) = A276085(A108951(A346097(n))), where A346097(n) gives the denominator of the primorial deflation of A276086(A108951(n)).
7
0, 1, 3, 2, 9, 6, 39, 1, 3, 18, 249, 12, 2559, 78, 54, 2, 32589, 6, 543099, 36, 234, 498, 10242789, 9, 96, 5118, 42, 156, 233335659, 45, 6703028889, 10, 1494, 65178, 312, 12, 207263519019, 1086198, 15354, 9, 7628001653829, 39, 311878265181039, 996, 165, 20485578, 13394639596851069, 21, 1284, 192, 195534, 10236, 628284422185342479
OFFSET
1,3
FORMULA
a(n) = A346108(n) - A108951(n).
PROG
(PARI)
A064989(n) = {my(f); f = factor(n); if((n>1 && f[1, 1]==2), f[1, 2] = 0); for (i=1, #f~, f[i, 1] = precprime(f[i, 1]-1)); factorback(f)};
A319627(n) = (A064989(n) / gcd(n, A064989(n)));
A002110(n) = prod(i=1, n, prime(i));
A276085(n) = { my(f = factor(n)); sum(k=1, #f~, f[k, 2]*A002110(primepi(f[k, 1])-1)); };
A346109(n) = A276085(A346107(n)); \\ Rest of program given in A324886.
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jul 08 2021
STATUS
approved