login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
Search: seq:1,0,1,0,1,1,0,2,3,1
Displaying 1-10 of 22 results found. page 1 2 3
     Sort: relevance | references | number | modified | created      Format: long | short | data
A264428 Triangle read by rows, Bell transform of Bell numbers. +30
187
1, 0, 1, 0, 1, 1, 0, 2, 3, 1, 0, 5, 11, 6, 1, 0, 15, 45, 35, 10, 1, 0, 52, 205, 210, 85, 15, 1, 0, 203, 1029, 1330, 700, 175, 21, 1, 0, 877, 5635, 8946, 5845, 1890, 322, 28, 1, 0, 4140, 33387, 63917, 50358, 20055, 4410, 546, 36, 1, 0, 21147, 212535, 484140, 450905, 214515, 57855, 9240, 870, 45, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,8
COMMENTS
Consider the sequence S0 -> T0 -> S1 -> T1 -> S2 -> T2 -> ... Here Sn -> Tn indicates the Bell transform mapping a sequence Sn to a triangle Tn as defined in the link and Tn -> S{n+1} the operator associating a triangle with the sequence of its row sums. If
S0 = A000012 = <1,1,1,...> then
T0 = A048993 # Stirling subset numbers,
S1 = A000110 # Bell numbers,
T1 = A264428 # Bell transform of Bell numbers,
S2 = A187761 # second-order Bell numbers,
T2 = A264430 # Bell transform of second-order Bell numbers,
S3 = A264432 # third-order Bell numbers.
This construction is closely related to permutations trees and A179455. Sn is A179455_col(n+1) prepended by A179455_diag(k) = k! for k <= n. In other words, Sn 'converges' to n! for n -> oo.
Given a sequence (s(n))n>=0 with s(0) = 0 and with e.g.f. B(x) = Sum_{n >= 1} s(n)*x^n/n!, then the Bell matrix associated with s(n) equals the exponential Riordan array [1, B(x)] belonging to the Lagrange subgroup of the exponential Riordan group. Omitting the first row and column from the Bell matrix produces the exponential Riordan array [d/dx(B(x)), B(x)] belonging to the Derivative subgroup of the exponential Riordan group. - Peter Bala, Jun 07 2016
LINKS
Peter Luschny, The Bell transform
Peter Luschny, Permutation Trees
FORMULA
From Peter Bala, Jun 07 2016: (Start)
E.g.f.: exp(t*B(x)), where B(x) = Integral_{u = 0..x} exp(exp(u) - 1) du = x + x^2/2! + 2*x^3/3! + 5*x^4/4! + 15*x^5/5! + 52*x^6/6! + ....
Row polynomial recurrence: R(n+1,t) = t*Sum_{k = 0 ..n} binomial(n,k)*Bell(k)* R(n-k,t) with R(0,t) = 1. (End)
EXAMPLE
Triangle starts:
[1]
[0, 1]
[0, 1, 1]
[0, 2, 3, 1]
[0, 5, 11, 6, 1]
[0, 15, 45, 35, 10, 1]
[0, 52, 205, 210, 85, 15, 1]
[0, 203, 1029, 1330, 700, 175, 21, 1]
[0, 877, 5635, 8946, 5845, 1890, 322, 28, 1]
MAPLE
# Computes sequence in matrix form.
BellMatrix := proc(f, len) local T, A; A := [seq(f(n), n=0..len-2)];
T := proc(n, k) option remember; if k=0 then k^n else
add(binomial(n-1, j-1)*T(n-j, k-1)*A[j], j=1..n-k+1) fi end;
Matrix(len, (n, k)->T(n-1, k-1), shape=triangular[lower]) end:
BellMatrix(n -> combinat:-bell(n), 9); # Peter Luschny, Jan 21 2016
# Alternative, using the recurrence of Peter Bala:
R := proc(n) option remember; if n = 0 then 1 else
t*add(binomial(n-1, k)*combinat:-bell(k)*R(n-k-1, t), k=0..n-1) fi end:
T_row := n-> seq(coeff(R(n), t, k), k=0..n):
seq(print(T_row(n)), n=0..8); # Peter Luschny, Jun 09 2016
MATHEMATICA
BellMatrix[f_Function|f_Symbol, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len-1}, {k, 0, len-1}]];
rows = 11;
M = BellMatrix[BellB, rows];
Table[M[[n, k]], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jan 21 2016, updated Jul 14 2018 *)
With[{r = 8}, Flatten[Table[BellY[n, k, BellB[Range[0, r]]], {n, 0, r}, {k, 0, n}]]] (* Jan Mangaldan, May 22 2016 *)
PROG
(Sage)
# The functions below are referenced in various other sequences.
def bell_transform(n, a): # partition_based
row = []
fn = factorial(n)
for k in (0..n):
result = 0
for p in Partitions(n, length=k):
factorial_product = 1
power_factorial_product = 1
for part, count in p.to_exp_dict().items():
factorial_product *= factorial(count)
power_factorial_product *= factorial(part)**count
coefficient = fn//(factorial_product*power_factorial_product)
result += coefficient*prod([a[i-1] for i in p])
row.append(result)
return row
def bell_matrix(generator, dim):
G = [generator(k) for k in srange(dim)]
row = lambda n: bell_transform(n, G)
return matrix(ZZ, [row(n)+[0]*(dim-n-1) for n in srange(dim)])
def inverse_bell_matrix(generator, dim):
G = [generator(k) for k in srange(dim)]
row = lambda n: bell_transform(n, G)
M = matrix(ZZ, [row(n)+[0]*(dim-n-1) for n in srange(dim)]).inverse()
return matrix(ZZ, dim, lambda n, k: (-1)^(n-k)*M[n, k])
bell_numbers = [sum(bell_transform(n, [1]*10)) for n in range(11)]
for n in range(11): print(bell_transform(n, bell_numbers))
(PARI)
bell_matrix(f, len) = { my( m = matrix(len, len) ); m[1, 1] = 1;
for( n = 1, len-1, m[n+1, 2] = f(n-1) );
for( n = 0, len-1, for( k = 1, n,
m[n+1, k+1] = sum(j = 1, n-k+1, binomial(n-1, j-1)*m[n-j+1, k]*m[j+1, 2]) ));
return( m )
}
f(n) = polcoeff( sum( k=0, n, prod( i=1, k, x / (1 - i*x)), x^n * O(x)), n);
bell_matrix(f, 9) \\ Peter Luschny, Jan 24 2016
(Python)
from functools import cache
from math import comb as binomial
def BellMatrix(f, size):
A = [f(n) for n in range(size - 1)]
@cache
def T(n, k):
if k == 0: return k ** n
return sum(
binomial(n - 1, j) * T(n - j - 1, k - 1) * A[j]
for j in range(n - k + 1) )
return [[T(n, k) for k in range(n + 1)] for n in range(size)]
@cache
def b(n, k=0): return n < 1 or k*b(n-1, k) + b(n-1, k+1)
print(BellMatrix(b, 9)) # Peter Luschny, Jun 14 2022
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Nov 13 2015
STATUS
approved
A132393 Triangle of unsigned Stirling numbers of the first kind (see A048994), read by rows, T(n,k) for 0 <= k <= n. +30
115
1, 0, 1, 0, 1, 1, 0, 2, 3, 1, 0, 6, 11, 6, 1, 0, 24, 50, 35, 10, 1, 0, 120, 274, 225, 85, 15, 1, 0, 720, 1764, 1624, 735, 175, 21, 1, 0, 5040, 13068, 13132, 6769, 1960, 322, 28, 1, 0, 40320, 109584, 118124, 67284, 22449, 4536, 546, 36, 1, 0, 362880, 1026576, 1172700 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,8
COMMENTS
Another name: Triangle of signless Stirling numbers of the first kind.
Triangle T(n,k), 0<=k<=n, read by rows given by [0,1,1,2,2,3,3,4,4,5,5,...] DELTA [1,0,1,0,1,0,1,0,1,...] where DELTA is the operator defined in A084938.
A094645*A007318 as infinite lower triangular matrices.
Row sums are the factorial numbers. - Roger L. Bagula, Apr 18 2008
Exponential Riordan array [1/(1-x), log(1/(1-x))]. - Ralf Stephan, Feb 07 2014
Also the Bell transform of the factorial numbers (A000142). For the definition of the Bell transform see A264428 and for cross-references A265606. - Peter Luschny, Dec 31 2015
This is the lower triagonal Sheffer matrix of the associated or Jabotinsky type |S1| = (1, -log(1-x)) (see the W. Lang link under A006232 for the notation and references). This implies the e.g.f.s given below. |S1| is the transition matrix from the monomial basis {x^n} to the rising factorial basis {risefac(x,n)}, n >= 0. - Wolfdieter Lang, Feb 21 2017
T(n, k), for n >= k >= 1, is also the total volume of the n-k dimensional cell (polytope) built from the n-k orthogonal vectors of pairwise different lengths chosen from the set {1, 2, ..., n-1}. See the elementary symmetric function formula for T(n, k) and an example below. - Wolfdieter Lang, May 28 2017
From Wolfdieter Lang, Jul 20 2017: (Start)
The compositional inverse w.r.t. x of y = y(t;x) = x*(1 - t(-log(1-x)/x)) = x + t*log(1-x) is x = x(t;y) = ED(y,t) := Sum_{d>=0} D(d,t)*y^(d+1)/(d+1)!, the e.g.f. of the o.g.f.s D(d,t) = Sum_{m>=0} T(d+m, m)*t^m of the diagonal sequences of the present triangle. See the P. Bala link for a proof (there d = n-1, n >= 1, is the label for the diagonals).
This inversion gives D(d,t) = P(d, t)/(1-t)^(2*d+1), with the numerator polynomials P(d, t) = Sum_{m=0..d} A288874(d, m)*t^m. See an example below. See also the P. Bala formula in A112007. (End)
For n > 0, T(n,k) is the number of permutations of the integers from 1 to n which have k visible digits when viewed from a specific end, in the sense that a higher value hides a lower one in a subsequent position. - Ian Duff, Jul 12 2019
REFERENCES
Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, pages 31, 187, 441, 996.
R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 2nd. ed., Table 259, p. 259.
Steve Roman, The Umbral Calculus, Dover Publications, New York (1984), pp. 149-150
LINKS
Roland Bacher and P. De La Harpe, Conjugacy growth series of some infinitely generated groups, hal-01285685v2, 2016.
Eli Bagno and David Garber, Combinatorics of q,r-analogues of Stirling numbers of type B, arXiv:2401.08365 [math.CO], 2024. See page 5.
J. Fernando Barbero G., Jesús Salas, and Eduardo J. S. Villaseñor, Bivariate Generating Functions for a Class of Linear Recurrences. I. General Structure, arXiv:1307.2010 [math.CO], 2013.
Jean-Luc Baril and Sergey Kirgizov, The pure descent statistic on permutations, Preprint, 2016.
Jean-Luc Baril and Sergey Kirgizov, Transformation à la Foata for special kinds of descents and excedances, arXiv:2101.01928 [math.CO], 2021.
Ricky X. F. Chen, A Note on the Generating Function for the Stirling Numbers of the First Kind, Journal of Integer Sequences, 18 (2015), #15.3.8.
W. S. Gray and M. Thitsa, System Interconnections and Combinatorial Integer Sequences, in: System Theory (SSST), 2013 45th Southeastern Symposium on, Date of Conference: 11-11 March 2013, Digital Object Identifier: 10.1109/SSST.2013.6524939.
John M. Holte, Carries, Combinatorics and an Amazing Matrix, The American Mathematical Monthly, Vol. 104, No. 2 (Feb., 1997), pp. 138-149.
Tanya Khovanova and J. B. Lewis, Skyscraper Numbers, J. Int. Seq. 16 (2013) #13.7.2.
Sergey Kitaev and Philip B. Zhang, Distributions of mesh patterns of short lengths, arXiv:1811.07679 [math.CO], 2018.
Shi-Mei Ma, Some combinatorial sequences associated with context-free grammars, arXiv:1208.3104v2 [math.CO], 2012. - From N. J. A. Sloane, Aug 21 2012
Emanuele Munarini, Shifting Property for Riordan, Sheffer and Connection Constants Matrices, Journal of Integer Sequences, Vol. 20 (2017), Article 17.8.2.
Emanuele Munarini, Combinatorial identities involving the central coefficients of a Sheffer matrix, Applicable Analysis and Discrete Mathematics (2019) Vol. 13, 495-517.
X.-T. Su, D.-Y. Yang, and W.-W. Zhang, A note on the generalized factorial, Australasian Journal of Combinatorics, Volume 56 (2013), Pages 133-137.
FORMULA
T(n,k) = T(n-1,k-1)+(n-1)*T(n-1,k), n,k>=1; T(n,0)=T(0,k); T(0,0)=1.
Sum_{k=0..n} T(n,k)*x^(n-k) = A000012(n), A000142(n), A001147(n), A007559(n), A007696(n), A008548(n), A008542(n), A045754(n), A045755(n) for x = 0, 1, 2, 3, 4, 5, 6, 7, 8 respectively. - Philippe Deléham, Nov 13 2007
Expand 1/(1-t)^x = Sum_{n>=0}p(x,n)*t^n/n!; then the coefficients of the p(x,n) produce the triangle. - Roger L. Bagula, Apr 18 2008
Sum_{k=0..n} T(n,k)*2^k*x^(n-k) = A000142(n+1), A000165(n), A008544(n), A001813(n), A047055(n), A047657(n), A084947(n), A084948(n), A084949(n) for x = 1, 2, 3, 4, 5, 6, 7, 8, 9 respectively. - Philippe Deléham, Sep 18 2008
a(n) = Sum_{k=0..n} T(n,k)*3^k*x^(n-k) = A001710(n+2), A001147(n+1), A032031(n), A008545(n), A047056(n), A011781(n), A144739(n), A144756(n), A144758(n) for x=1,2,3,4,5,6,7,8,9,respectively. - Philippe Deléham, Sep 20 2008
Sum_{k=0..n} T(n,k)*4^k*x^(n-k) = A001715(n+3), A002866(n+1), A007559(n+1), A047053(n), A008546(n), A049308(n), A144827(n), A144828(n), A144829(n) for x=1,2,3,4,5,6,7,8,9 respectively. - Philippe Deléham, Sep 21 2008
Sum_{k=0..n} x^k*T(n,k) = x*(1+x)*(2+x)*...*(n-1+x), n>=1. - Philippe Deléham, Oct 17 2008
From Wolfdieter Lang, Feb 21 2017: (Start)
E.g.f. k-th column: (-log(1 - x))^k, k >= 0.
E.g.f. triangle (see the Apr 18 2008 Baluga comment): exp(-x*log(1-z)).
E.g.f. a-sequence: x/(1 - exp(-x)). See A164555/A027642. The e.g.f. for the z-sequence is 0. (End)
From Wolfdieter Lang, May 28 2017: (Start)
The row polynomials R(n, x) = Sum_{k=0..n} T(n, k)*x^k, for n >= 0, are R(n, x) = risefac(x,n-1) := Product_{j=0..n-1} x+j, with the empty product for n=0 put to 1. See the Feb 21 2017 comment above. This implies:
T(n, k) = sigma^{(n-1)}_(n-k), for n >= k >= 1, with the elementary symmetric functions sigma^{(n-1))_m of degree m in the n-1 symbols 1, 2, ..., n-1, with binomial(n-1, m) terms. See an example below.(End)
Boas-Buck type recurrence for column sequence k: T(n, k) = (n!*k/(n - k)) * Sum_{p=k..n-1} beta(n-1-p)*T(p, k)/p!, for n > k >= 0, with input T(k, k) = 1, and beta(k) = A002208(k+1)/A002209(k+1). See a comment and references in A286718. - Wolfdieter Lang, Aug 11 2017
T(n,k) = Sum_{j=k..n} j^(j-k)*binomial(j-1, k-1)*A354795(n,j) for n > 0. - Mélika Tebni, Mar 02 2023
n-th row polynomial: n!*Sum_{k = 0..2*n} (-1)^k*binomial(-x, k)*binomial(-x, 2*n-k) = n!*Sum_{k = 0..2*n} (-1)^k*binomial(1-x, k)*binomial(-x, 2*n-k). - Peter Bala, Mar 31 2024
EXAMPLE
Triangle T(n,k) begins:
1;
0, 1;
0, 1, 1;
0, 2, 3, 1;
0, 6, 11, 6, 1;
0, 24, 50, 35, 10, 1;
0, 120, 274, 225, 85, 15, 1;
0, 720, 1764, 1624, 735, 175, 21, 1;
0, 5040, 13068, 13132, 6769, 1960, 322, 28, 1;
---------------------------------------------------
Production matrix is
0, 1
0, 1, 1
0, 1, 2, 1
0, 1, 3, 3, 1
0, 1, 4, 6, 4, 1
0, 1, 5, 10, 10, 5, 1
0, 1, 6, 15, 20, 15, 6, 1
0, 1, 7, 21, 35, 35, 21, 7, 1
...
From Wolfdieter Lang, May 09 2017: (Start)
Three term recurrence: 50 = T(5, 2) = 1*6 + (5-1)*11 = 50.
Recurrence from the Sheffer a-sequence [1, 1/2, 1/6, 0, ...]: 50 = T(5, 2) = (5/2)*(binomial(1, 1)*1*6 + binomial(2, 1)*(1/2)*11 + binomial(3, 1)*(1/6)*6 + 0) = 50. The vanishing z-sequence produces the k=0 column from T(0, 0) = 1. (End)
Elementary symmetric function T(4, 2) = sigma^{(3)}_2 = 1*2 + 1*3 + 2*3 = 11. Here the cells (polytopes) are 3 rectangles with total area 11. - Wolfdieter Lang, May 28 2017
O.g.f.s of diagonals: d=2 (third diagonal) [0, 6, 50, ...] has D(2,t) = P(2, t)/(1-t)^5, with P(2, t) = 2 + t, the n = 2 row of A288874. - Wolfdieter Lang, Jul 20 2017
Boas-Buck recurrence for column k = 2 and n= 5: T(5, 2) = (5!*2/3)*((3/8)*T(2,2)/2! + (5/12)*T(3,2)/3! + (1/2)*T(4,2)/4!) = (5!*2/3)*((3/16 + (5/12)*3/3! + (1/2)*11/4!) = 50. The beta sequence begins: {1/2, 5/12, 3/8, ...}. - Wolfdieter Lang, Aug 11 2017
MAPLE
a132393_row := proc(n) local k; seq(coeff(expand(pochhammer (x, n)), x, k), k=0..n) end: # Peter Luschny, Nov 28 2010
MATHEMATICA
p[t_] = 1/(1 - t)^x; Table[ ExpandAll[(n!)SeriesCoefficient[ Series[p[t], {t, 0, 30}], n]], {n, 0, 10}]; a = Table[(n!)* CoefficientList[SeriesCoefficient[ Series[p[t], {t, 0, 30}], n], x], {n, 0, 10}]; Flatten[a] (* Roger L. Bagula, Apr 18 2008 *)
Flatten[Table[Abs[StirlingS1[n, i]], {n, 0, 10}, {i, 0, n}]] (* Harvey P. Dale, Feb 04 2014 *)
PROG
(Maxima) create_list(abs(stirling1(n, k)), n, 0, 12, k, 0, n); /* Emanuele Munarini, Mar 11 2011 */
(Haskell)
a132393 n k = a132393_tabl !! n !! k
a132393_row n = a132393_tabl !! n
a132393_tabl = map (map abs) a048994_tabl
-- Reinhard Zumkeller, Nov 06 2013
CROSSREFS
Essentially a duplicate of A048994. Cf. A008275, A008277, A112007, A130534, A288874, A354795.
KEYWORD
nonn,tabl,easy
AUTHOR
Philippe Deléham, Nov 10 2007, Oct 15 2008, Oct 17 2008
STATUS
approved
A145142 Triangle T(n,k), n>=1, 0<=k<=n-1, read by rows: T(n,k)/(n-1)! is the coefficient of x^k in polynomial p_n for the n-th row sequence of A145153. +30
18
1, 0, 1, 0, 1, 1, 0, 2, 3, 1, 24, 6, 11, 6, 1, 120, 144, 50, 35, 10, 1, 720, 1200, 634, 225, 85, 15, 1, 5040, 9960, 6804, 2464, 735, 175, 21, 1, 80640, 89040, 71868, 29932, 8449, 1960, 322, 28, 1, 1088640, 1231776, 789984, 375164, 112644, 25473, 4536, 546, 36, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
1,8
LINKS
FORMULA
See program.
EXAMPLE
Triangle begins:
1;
0, 1;
0, 1, 1;
0, 2, 3, 1;
24, 6, 11, 6, 1;
120, 144, 50, 35, 10, 1;
MAPLE
row:= proc(n) option remember; local f, i, x; f:= unapply(simplify(sum('cat(a||i) *x^i', 'i'=0..n-1) ), x); unapply(subs(solve({seq(f(i+1)= coeftayl(x/ (1-x-x^4)/ (1-x)^i, x=0, n), i=0..n-1)}, {seq(cat(a||i), i=0..n-1)}), sum('cat(a||i) *x^i', 'i'=0..n-1) ), x); end: T:= (n, k)-> `if`(k<0 or k>=n, 0, coeff(row(n)(x), x, k)*(n-1)!): seq(seq(T(n, k), k=0..n-1), n=1..12);
MATHEMATICA
row[n_] := Module[{f, eq}, f = Function[x, Sum[a[k]*x^k, {k, 0, n-1}]]; eq = Table[f[k+1] == SeriesCoefficient[x/(1-x-x^4)/(1-x)^k, {x, 0, n}], {k, 0, n-1}]; Table[a[k], {k, 0, n-1}] /. Solve[eq] // First]; Table[row[n]*(n-1)!, {n, 1, 12}] // Flatten (* Jean-François Alcover, Feb 04 2014, after Alois P. Heinz *)
CROSSREFS
T(n,k)/(n-1)! gives: A145140 / A145141.
Diagonal and lower diagonals 1-3 give: A000012, A000217, A000914, A001303.
Row sums are in A052593.
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Oct 03 2008
STATUS
approved
A293113 Number T(n,k) of sets of nonempty words with a total of n letters over k-ary alphabet containing the k-th letter such that within each prefix of a word every letter of the alphabet is at least as frequent as the subsequent alphabet letter; triangle T(n,k), n>=0, 0<=k<=n, read by rows. +30
14
1, 0, 1, 0, 1, 1, 0, 2, 3, 1, 0, 2, 8, 4, 1, 0, 3, 20, 16, 5, 1, 0, 4, 47, 53, 25, 6, 1, 0, 5, 106, 173, 102, 36, 7, 1, 0, 6, 237, 532, 410, 172, 49, 8, 1, 0, 8, 522, 1615, 1545, 813, 268, 64, 9, 1, 0, 10, 1146, 4785, 5784, 3576, 1448, 394, 81, 10, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,8
LINKS
FORMULA
T(n,k) = A293112(n,k) - A293112(n,k-1) for k>0, T(n,0) = A293112(n,0).
EXAMPLE
Triangle T(n,k) begins:
1;
0, 1;
0, 1, 1;
0, 2, 3, 1;
0, 2, 8, 4, 1;
0, 3, 20, 16, 5, 1;
0, 4, 47, 53, 25, 6, 1;
0, 5, 106, 173, 102, 36, 7, 1;
0, 6, 237, 532, 410, 172, 49, 8, 1;
MAPLE
h:= l-> (n-> add(i, i=l)!/mul(mul(1+l[i]-j+add(`if`(l[k]
<j, 0, 1), k=i+1..n), j=1..l[i]), i=1..n))(nops(l)):
g:= proc(n, i, l) option remember;
`if`(n=0, h(l), `if`(i<1, 0, `if`(i=1, h([l[], 1$n]),
g(n, i-1, l) +`if`(i>n, 0, g(n-i, i, [l[], i])))))
end:
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(b(n-i*j, i-1, k)*binomial(g(i, k, []), j), j=0..n/i)))
end:
T:= (n, k)-> b(n$2, k)-`if`(k=0, 0, b(n$2, k-1)):
seq(seq(T(n, k), k=0..n), n=0..14);
MATHEMATICA
h[l_] := Function[n, Total[l]!/Product[Product[1 + l[[i]] - j + Sum[If[ l[[k]]<j, 0, 1], {k, i+1, n}], {j, 1, l[[i]]}], {i, 1, n}]][ Length[l]];
g[n_, i_, l_] := g[n, i, l] = If[n == 0, h[l], If[i < 1, 0, If[i == 1, h[Join[l, Table[1, n]]], g[n, i - 1, l] + If[i > n, 0, g[n - i, i, Append[l, i]]]]]];
b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i<1, 0, Sum[b[n - i*j, i-1, k]*Binomial[g[i, k, {}], j], {j, 0, n/i}]]];
T[n_, k_] := b[n, n, k] - If[k == 0, 0, b[n, n, k - 1]];
Table[T[n, k], {n, 0, 14}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 04 2018, after Alois P. Heinz *)
CROSSREFS
Columns k=0-10 give: A000007, A000009 (for n>0), A293883, A293884, A293885, A293886, A293887, A293888, A293889, A293890, A293891.
Row sums give A293114.
T(2n,n) gives A293115.
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Sep 30 2017
STATUS
approved
A344855 Number T(n,k) of permutations of [n] having k cycles of the form (c1, c2, ..., c_m) where c1 = min_{i>=1} c_i and c_j = min_{i>=j} c_i or c_j = max_{i>=j} c_i; triangle T(n,k), n>=0, 0<=k<=n, read by rows. +30
13
1, 0, 1, 0, 1, 1, 0, 2, 3, 1, 0, 4, 11, 6, 1, 0, 8, 40, 35, 10, 1, 0, 16, 148, 195, 85, 15, 1, 0, 32, 560, 1078, 665, 175, 21, 1, 0, 64, 2160, 5992, 5033, 1820, 322, 28, 1, 0, 128, 8448, 33632, 37632, 17913, 4284, 546, 36, 1, 0, 256, 33344, 190800, 280760, 171465, 52941, 9030, 870, 45, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,8
COMMENTS
The sequence of column k satisfies a linear recurrence with constant coefficients of order k*(k+1)/2 = A000217(k).
LINKS
Wikipedia, Permutation
FORMULA
Sum_{k=1..n} k * T(n,k) = A345341(n).
For fixed k, T(n,k) ~ (2*k)^n / (4^k * k!). - Vaclav Kotesovec, Jul 15 2021
EXAMPLE
T(4,1) = 4: (1234), (1243), (1423), (1432).
Triangle T(n,k) begins:
1;
0, 1;
0, 1, 1;
0, 2, 3, 1;
0, 4, 11, 6, 1;
0, 8, 40, 35, 10, 1;
0, 16, 148, 195, 85, 15, 1;
0, 32, 560, 1078, 665, 175, 21, 1;
0, 64, 2160, 5992, 5033, 1820, 322, 28, 1;
...
MAPLE
b:= proc(n) option remember; `if`(n=0, 1, add(expand(x*
b(n-j)*binomial(n-1, j-1)*ceil(2^(j-2))), j=1..n))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n)):
seq(T(n), n=0..12);
MATHEMATICA
b[n_] := b[n] = If[n == 0, 1, Sum[Expand[x*b[n-j]*
Binomial[n-1, j-1]*Ceiling[2^(j-2)]], {j, n}]];
T[n_] := CoefficientList[b[n], x];
Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Aug 23 2021, after Alois P. Heinz *)
CROSSREFS
Row sums give A187251.
Main diagonal gives A000012, lower diagonal gives A000217, second lower diagonal gives A000914.
T(n+1,n) gives A000217.
T(n+2,n) gives A000914.
T(2n,n) gives A345342.
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, May 30 2021
STATUS
approved
A346415 Triangle T(n,k), n>=0, 0<=k<=n, read by rows, where column k is (1/k!) times the k-fold exponential convolution of Fibonacci numbers with themselves. +30
5
1, 0, 1, 0, 1, 1, 0, 2, 3, 1, 0, 3, 11, 6, 1, 0, 5, 35, 35, 10, 1, 0, 8, 115, 180, 85, 15, 1, 0, 13, 371, 910, 630, 175, 21, 1, 0, 21, 1203, 4494, 4445, 1750, 322, 28, 1, 0, 34, 3891, 22049, 30282, 16275, 4158, 546, 36, 1, 0, 55, 12595, 107580, 202565, 144375, 49035, 8820, 870, 45, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,8
COMMENTS
The sequence of column k>0 satisfies a linear recurrence with constant coefficients of order k+1.
LINKS
EXAMPLE
Triangle T(n,k) begins:
1;
0, 1;
0, 1, 1;
0, 2, 3, 1;
0, 3, 11, 6, 1;
0, 5, 35, 35, 10, 1;
0, 8, 115, 180, 85, 15, 1;
0, 13, 371, 910, 630, 175, 21, 1;
0, 21, 1203, 4494, 4445, 1750, 322, 28, 1;
0, 34, 3891, 22049, 30282, 16275, 4158, 546, 36, 1;
0, 55, 12595, 107580, 202565, 144375, 49035, 8820, 870, 45, 1;
...
MAPLE
b:= proc(n) option remember; `if`(n=0, 1, add(expand(x*b(n-j)
*binomial(n-1, j-1)*(<<0|1>, <1|1>>^j)[1, 2]), j=1..n))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n)):
seq(T(n), n=0..12);
# second Maple program:
b:= proc(n, k) option remember; `if`(k=0, 0^n, `if`(k=1,
combinat[fibonacci](n), (q-> add(binomial(n, j)*
b(j, q)*b(n-j, k-q), j=0..n))(iquo(k, 2))))
end:
T:= (n, k)-> b(n, k)/k!:
seq(seq(T(n, k), k=0..n), n=0..12);
MATHEMATICA
b[n_, k_] := b[n, k] = If[k == 0, 0^n, If[k == 1, Fibonacci[n], With[{q = Quotient[k, 2]}, Sum[Binomial[n, j] b[j, q] b[n-j, k-q], {j, 0, n}]]]];
T[n_, k_] := b[n, k]/k!;
Table[Table[T[n, k], {k, 0, n}], {n, 0, 12}] // Flatten (* Jean-François Alcover, Nov 06 2021, after 2nd Maple program *)
CROSSREFS
Columns k=0-4 give: A000007, A000045, A014335, A014337, A014341.
T(n+j,n) for j=0-2 give: A000012, A000217, A000914.
Row sums give A256180.
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Jul 15 2021
STATUS
approved
A187247 Triangle read by rows: T(n,k) is the number of permutations of [n] having k cycles with at most 2 alternating runs (it is assumed that the smallest element of the cycle is in the first position), 0<=k<=n. +30
4
1, 0, 1, 0, 1, 1, 0, 2, 3, 1, 2, 4, 11, 6, 1, 16, 18, 40, 35, 10, 1, 104, 142, 178, 195, 85, 15, 1, 688, 1236, 1106, 1148, 665, 175, 21, 1, 5116, 10832, 9300, 7728, 5173, 1820, 322, 28, 1, 44224, 98492, 91680, 63284, 42168, 18165, 4284, 546, 36, 1, 438560, 964172, 974924, 627420, 378620, 181797, 53361, 9030, 870, 45, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,8
COMMENTS
Sum of entries in row n is n!.
T(n,0) = A187248(n).
Sum(k*T(n,k),k>=0) = A187249(n).
LINKS
FORMULA
E.g.f.: G(t,z) = exp[(1/4)(t-1)(2z - 1 + exp(2z))]/(1-z).
The 4-variate g.f. H(u,v,w,z) (exponential with respect z), where u marks number of cycles with 1 alternating run, v marks number of cycles with 2 alternating runs, w marks the number of all cycles, and z marks the size of the permutation, is given by
H(u,v,w,z) = exp[(1/4)w((v-1)(exp(2z)+2z)+4(u-v)exp(z)+1-4u+3v)]/(1-z)^w.
We have G(t,z) = H(t,t,1,z).
EXAMPLE
T(3,2)=3 because we have (1)(23), (12)(3), and (13)(2).
T(4,0)=2 because we have (1423) and (1324).
T(4,1)=4 because we have (1234), (1243), (1342), and (1432).
Triangle starts:
1;
0,1;
0,1,1;
0,2,3,1;
2,4,11,6,1;
16,18,40,35,10,1;
MAPLE
G := exp((1/4)*(t-1)*(2*z-1+exp(2*z)))/(1-z): Gser := simplify(series(G, z = 0, 15)): for n from 0 to 13 do P[n] := sort(expand(factorial(n) * coeff(Gser, z, n))) end do: for n from 0 to 10 do seq(coeff(P[n], t, k), k = 0 .. n) end do; # yields sequence in triangular form
# second Maple program:
b:= proc(n) option remember; expand(
`if`(n=0, 1, add(b(n-j)*binomial(n-1, j-1)*
`if`(j=1, x, (j-1)!+2^(j-2)*(x-1)), j=1..n)))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n)):
seq(T(n), n=0..12); # Alois P. Heinz, Apr 15 2017
MATHEMATICA
b[n_] := b[n] = Expand[If[n==0, 1, Sum[b[n-j]*Binomial[n-1, j-1]*If[j==1, x, (j-1)! + 2^(j-2)*(x-1)], {j, 1, n}]]];
T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, n}]][b[n]];
Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, May 18 2017, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Emeric Deutsch, Mar 07 2011
STATUS
approved
A352363 Triangle read by rows. The incomplete Bell transform of the swinging factorials A056040. +30
4
1, 0, 1, 0, 1, 1, 0, 2, 3, 1, 0, 6, 11, 6, 1, 0, 6, 50, 35, 10, 1, 0, 30, 166, 225, 85, 15, 1, 0, 20, 756, 1246, 735, 175, 21, 1, 0, 140, 2932, 7588, 5761, 1960, 322, 28, 1, 0, 70, 11556, 45296, 46116, 20181, 4536, 546, 36, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,8
LINKS
FORMULA
Given a sequence s let s|n denote the initial segment s(0), s(1), ..., s(n).
(T(s))(n, k) = IncompleteBellPolynomial(n, k, s|n), where s(n) = n!/floor(n/2)!^2.
EXAMPLE
Triangle starts:
[0] 1;
[1] 0, 1;
[2] 0, 1, 1;
[3] 0, 2, 3, 1;
[4] 0, 6, 11, 6, 1;
[5] 0, 6, 50, 35, 10, 1;
[6] 0, 30, 166, 225, 85, 15, 1;
[7] 0, 20, 756, 1246, 735, 175, 21, 1;
[8] 0, 140, 2932, 7588, 5761, 1960, 322, 28, 1;
[9] 0, 70, 11556, 45296, 46116, 20181, 4536, 546, 36, 1;
MAPLE
SwingNumber := n -> n! / iquo(n, 2)!^2:
for n from 0 to 9 do
seq(IncompleteBellB(n, k, seq(SwingNumber(j), j = 0..n)), k = 0..n) od;
CROSSREFS
Cf. A056040, A352364 (row sums), A352365 (alternating row sums).
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Mar 15 2022
STATUS
approved
A352366 Triangle read by rows. The incomplete Bell transform of the Catalan numbers. +30
4
1, 0, 1, 0, 1, 1, 0, 2, 3, 1, 0, 5, 11, 6, 1, 0, 14, 45, 35, 10, 1, 0, 42, 199, 210, 85, 15, 1, 0, 132, 938, 1309, 700, 175, 21, 1, 0, 429, 4675, 8498, 5789, 1890, 322, 28, 1, 0, 1430, 24489, 57455, 48762, 19929, 4410, 546, 36, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,8
LINKS
FORMULA
Given a sequence s let s|n denote the initial segment s(0), s(1), ..., s(n).
(T(s))(n, k) = IncompleteBellPolynomial(n, k, s|n) where s(n) = CatalanNumber(n).
EXAMPLE
Triangle start:
[0] 1;
[1] 0, 1;
[2] 0, 1, 1;
[3] 0, 2, 3, 1;
[4] 0, 5, 11, 6, 1;
[5] 0, 14, 45, 35, 10, 1;
[6] 0, 42, 199, 210, 85, 15, 1;
[7] 0, 132, 938, 1309, 700, 175, 21, 1;
[8] 0, 429, 4675, 8498, 5789, 1890, 322, 28, 1;
[9] 0, 1430, 24489, 57455, 48762, 19929, 4410, 546, 36, 1;
MAPLE
CatalanNumber := n -> binomial(2*n, n)/(n + 1):
for n from 0 to 9 do
seq(IncompleteBellB(n, k, seq(CatalanNumber(j), j=0 .. n)), k = 0..n) od;
CROSSREFS
Cf. A000108, A352367 (row sums), A352368 (alternating row sums).
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Mar 15 2022
STATUS
approved
A172380 Eigentriangle of Catalan triangle A033184. +30
3
1, 0, 1, 0, 1, 1, 0, 2, 3, 1, 0, 5, 10, 6, 1, 0, 14, 36, 31, 10, 1, 0, 42, 137, 156, 75, 15, 1, 0, 132, 544, 787, 510, 155, 21, 1, 0, 429, 2235, 4017, 3331, 1380, 287, 28, 1, 0, 1430, 9445, 20809, 21405, 11411, 3255, 490, 36, 1, 0, 4862, 40876, 109486, 136921, 90665 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,8
COMMENTS
Row sums are A091768.
Production matrix of inverse is matrix with general term (-1)^(n-k+1)C(k,n-k+1).
Diagonal sums are A172382. Product of A033184 and A172380 is the matrix A172381.
LINKS
Paul Barry, Invariant number triangles, eigentriangles and Somos-4 sequences, arXiv preprint arXiv:1107.5490 [math.CO], 2011.
EXAMPLE
Triangle begins
1;
0, 1;
0, 1, 1;
0, 2, 3, 1;
0, 5, 10, 6, 1;
0, 14, 36, 31, 10, 1;
0, 42, 137, 156, 75, 15, 1;
0, 132, 544, 787, 510, 155, 21, 1;
0, 429, 2235, 4017, 3331, 1380, 287, 28, 1;
0, 1430, 9445, 20809, 21405, 11411, 3255, 490, 36, 1;
Production matrix of inverse is
0, 1;
0, -1, 1;
0, 0, -2, 1;
0, 0, 1, -3, 1;
0, 0, 0, 3, -4, 1;
0, 0, 0, -1, 6, -5, 1;
0, 0, 0, 0, -4, 10, -6, 1;
0, 0, 0, 0, 1, -10, 15, -7, 1;
0, 0, 0, 0, 0, 5, -20, 21, -8, 1;
0, 0, 0, 0, 0, -1, 15, -35, 28, -9, 1;
0, 0, 0, 0, 0, 0, -6, 35, -56, 36, -10, 1;
KEYWORD
nonn,tabl
AUTHOR
Paul Barry, Feb 01 2010
STATUS
approved
page 1 2 3

Search completed in 0.012 seconds

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 11 15:23 EDT 2024. Contains 374234 sequences. (Running on oeis4.)