login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A091768
Similar to Bell numbers (A000110).
8
1, 2, 6, 22, 92, 426, 2150, 11708, 68282, 423948, 2788230, 19341952, 141003552, 1076787624, 8589843716, 71404154928, 617151121998, 5535236798058, 51426766394244, 494145546973656, 4903432458931118, 50181840470551778, 529009041574922566
OFFSET
0,2
COMMENTS
Equals row sums of triangle A163946. - Gary W. Adamson, Aug 06 2009
LINKS
Juan S. Auli and Sergi Elizalde, Wilf equivalences between vincular patterns in inversion sequences, arXiv:2003.11533 [math.CO], 2020.
Paul Barry, Invariant number triangles, eigentriangles and Somos-4 sequences, arXiv preprint arXiv:1107.5490 [math.CO], 2011.
Zhicong Lin, Sherry H. F. Yan, Vincular patterns in inversion sequences, Applied Mathematics and Computation (2020), Vol. 364, 124672.
FORMULA
From Paul D. Hanna, Aug 13 2008: (Start)
G.f. satisfies: (1-x)*A(x-x^2) = 1 + x*A(x).
G.f. satisfies: A(x) = C(x) + x*C(x)^2*A(x*C(x)), where C(x) is the Catalan function (A000108).
a(n) = A000108(n) + Sum_{k=0..n-1} a(k)*C(2*n-k-1,n-k-1)*(k+2)/(n+1) for n>=0; eigensequence (shift left) of the Catalan triangle A033184. (End)
EXAMPLE
The Bell numbers can be generated by;
1
1 2
2 3 5
5 7 10 15
where the Bell numbers are the last entry on each line. This last entry is the first entry on the next line and then the last two entries of the previous column are added, e.g. 7=5+2, 10=7+3, 15=10+5.
This version adds ALL of the entries in the previous column to the new entry.
1
1 2
2 4 6
6 10 16 22
where 10=6+2+1+1, 16=10+2+4, 22=16+6
MATHEMATICA
nmax=21; b = ConstantArray[0, nmax]; b[[1]]=1; Do[b[[n+1]] = Binomial[2*n, n]/(n+1) + Sum[b[[k+1]]*Binomial[2*n-k-1, n-k-1]*(k+2)/(n+1), {k, 0, n-1}], {n, 1, nmax-1}]; b (* Vaclav Kotesovec, Mar 13 2014 *)
PROG
(PARI) v=vector(20); for (i=1, 20, v[i]=vector(i)); v[1][1]=1; for (i=2, 20, v[i][1]=v[i-1][i-1]; for (j=2, i, v[i][j]=v[i][j-1]+sum(k=j-1, i-1, v[k][j-1]))); for (i=1, 20, print1(", "v[i][i]))
(PARI) a(n)=binomial(2*n, n)/(n+1)+sum(k=0, n-1, a(k)*binomial(2*n-k-1, n-k-1)*(k+2)/(n+1)) \\ Paul D. Hanna, Aug 13 2008
(PARI) a(n)=local(A=1+x*O(x^n), C=serreverse(x-x^2+x^2*O(x^n))/x); for(i=0, n, A=C+x*C^2*subst(A, x, x*C)); polcoeff(A, n) \\ Paul D. Hanna, Aug 13 2008
CROSSREFS
Close to A074664
Cf. A000110 (Bell Numbers), A033184, A000108, A163946.
Sequence in context: A124295 A074664 A367442 * A229741 A261518 A185349
KEYWORD
nonn
AUTHOR
Jon Perry, Mar 06 2004
EXTENSIONS
More terms from Vincenzo Librandi, Mar 15 2014
STATUS
approved