login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A144756
Partial products of successive terms of A017101; a(0)=1 .
4
1, 3, 33, 627, 16929, 592515, 25478145, 1299385395, 76663738305, 5136470466435, 385235284982625, 31974528653557875, 2909682107473766625, 288058528639902895875, 30822262564469609858625, 3544560194914005133741875, 435980903974422631450250625, 57113498420649364719982831875
OFFSET
0,2
FORMULA
a(n) = Sum_{k=0..n} A132393(n,k)*3^k*8^(n-k).
a(n) = (-5)^n*sum_{k=0..n} (8/5)^k*s(n+1,n+1-k), where s(n,k) are the Stirling numbers of the first kind, A048994. - Mircea Merca, May 03 2012
G.f.: 2/G(0), where G(k)= 1 + 1/(1 - 2*x*(8*k+3)/(2*x*(8*k+3) - 1 + 16*x*(k+1)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 30 2013
a(n) +(-8*n+5)*a(n-1)=0. - R. J. Mathar, Sep 04 2016
From Ilya Gutkovskiy, Mar 23 2017: (Start)
E.g.f.: 1/(1 - 8*x)^(3/8).
a(n) ~ sqrt(2*Pi)*8^n*n^n/(exp(n)*n^(1/8)*Gamma(3/8)). (End)
Sum_{n>=0} 1/a(n) = 1 + (e/8^5)^(1/8)*(Gamma(3/8) - Gamma(3/8, 1/8)). - Amiram Eldar, Dec 20 2022
EXAMPLE
a(0)=1, a(1)=3, a(2)=3*11=33, a(3)=3*11*19=627, a(4)=3*11*19*27=16929, ...
MATHEMATICA
Join[{1}, FoldList[Times, 8Range[0, 20]+3]] (* Harvey P. Dale, Aug 11 2019 *)
KEYWORD
nonn,easy
AUTHOR
Philippe Deléham, Sep 20 2008
EXTENSIONS
a(11) corrected by Ilya Gutkovskiy, Mar 23 2017
STATUS
approved