OFFSET
2,5
COMMENTS
A factor tree for n is a binary tree, with the root labeled with n and the terminal nodes labeled with primes, such that each non-terminal node is the product of its two child nodes. This is the number of prime factorizations of n, ignoring the commutativity and associativity of multiplication.
LINKS
Reinhard Zumkeller, Table of n, a(n) for n = 2..10000
EXAMPLE
a(12)=6 because 12 can be factored as (2*2)*3, (2*3)*2, (3*2)*2, 2*(2*3), 2*(3*2) and 3*(2*2).
MATHEMATICA
a8480[n_] := With[{f = FactorInteger[n][[All, 2]]}, Total[f]!/Times @@ (f!)];
a[n_] := CatalanNumber[PrimeOmega[n] - 1] * a8480[n];
a /@ Range[2, 100] (* Jean-François Alcover, Sep 20 2019 *)
PROG
(Haskell)
a144757 n = a000108 (a001222 n - 1) * a008480 n
-- Reinhard Zumkeller, Nov 19 2015
(PARI) seq(n)={my(v=vector(n)); for(n=2, n, v[n] = isprime(n) + sumdiv(n, d, v[d]*v[n/d])); v[2..n]} \\ Andrew Howroyd, Nov 17 2018
(PARI) a(n)={if(n>=2, my(sig=factor(n)[, 2]); my(t=vecsum(sig)-1); binomial(2*t, t)*t!/vecprod(apply(k->k!, sig)), 0)} \\ Andrew Howroyd, Nov 17 2018
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
David Radcliffe, Sep 20 2008
STATUS
approved