login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A144757
Number of factor trees for n.
1
1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 6, 1, 2, 2, 5, 1, 6, 1, 6, 2, 2, 1, 20, 1, 2, 2, 6, 1, 12, 1, 14, 2, 2, 2, 30, 1, 2, 2, 20, 1, 12, 1, 6, 6, 2, 1, 70, 1, 6, 2, 6, 1, 20, 2, 20, 2, 2, 1, 60, 1, 2, 6, 42, 2, 12, 1, 6, 2, 12, 1, 140, 1, 2, 6, 6, 2, 12, 1, 70, 5, 2, 1, 60, 2, 2, 2, 20, 1, 60, 2, 6, 2, 2, 2, 252
OFFSET
2,5
COMMENTS
A factor tree for n is a binary tree, with the root labeled with n and the terminal nodes labeled with primes, such that each non-terminal node is the product of its two child nodes. This is the number of prime factorizations of n, ignoring the commutativity and associativity of multiplication.
LINKS
FORMULA
a(n) = A000108(A001222(n)-1) * A008480(n).
EXAMPLE
a(12)=6 because 12 can be factored as (2*2)*3, (2*3)*2, (3*2)*2, 2*(2*3), 2*(3*2) and 3*(2*2).
MATHEMATICA
a8480[n_] := With[{f = FactorInteger[n][[All, 2]]}, Total[f]!/Times @@ (f!)];
a[n_] := CatalanNumber[PrimeOmega[n] - 1] * a8480[n];
a /@ Range[2, 100] (* Jean-François Alcover, Sep 20 2019 *)
PROG
(Haskell)
a144757 n = a000108 (a001222 n - 1) * a008480 n
-- Reinhard Zumkeller, Nov 19 2015
(PARI) seq(n)={my(v=vector(n)); for(n=2, n, v[n] = isprime(n) + sumdiv(n, d, v[d]*v[n/d])); v[2..n]} \\ Andrew Howroyd, Nov 17 2018
(PARI) a(n)={if(n>=2, my(sig=factor(n)[, 2]); my(t=vecsum(sig)-1); binomial(2*t, t)*t!/vecprod(apply(k->k!, sig)), 0)} \\ Andrew Howroyd, Nov 17 2018
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
David Radcliffe, Sep 20 2008
STATUS
approved