login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A367427
Expansion of e.g.f. 1 / (1 + log(1 - 4*x))^(3/4).
0
1, 3, 33, 579, 13857, 419427, 15344769, 658225635, 32388324801, 1798082759235, 111173908726881, 7575821838083331, 564099365435411169, 45567223702943324067, 3968829692958916703169, 370764641464637535547299, 36980399763333881818665345
OFFSET
0,2
FORMULA
a(n) = Sum_{k=0..n} 4^(n-k) * (Product_{j=0..k-1} (4*j+3)) * |Stirling1(n,k)|.
a(0) = 1; a(n) = Sum_{k=1..n} 4^k * (1 - 1/4 * k/n) * (k-1)! * binomial(n,k) * a(n-k).
PROG
(PARI) a(n) = sum(k=0, n, 4^(n-k)*prod(j=0, k-1, 4*j+3)*abs(stirling(n, k, 1)));
CROSSREFS
Cf. A367429.
Sequence in context: A083080 A002916 A009659 * A361212 A144756 A377453
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Nov 18 2023
STATUS
approved