login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A367426
Expansion of e.g.f. 1 / (1 + log(1 - 4*x))^(1/4).
0
1, 1, 9, 137, 2929, 80689, 2722745, 108817785, 5028704865, 263891635425, 15505410046185, 1008591244314345, 71960155841683665, 5587928499550175505, 469183592107676627865, 42356983967876631615705, 4091474631070907136246465, 421070307443746576367920065
OFFSET
0,3
FORMULA
a(n) = Sum_{k=0..n} 4^(n-k) * (Product_{j=0..k-1} (4*j+1)) * |Stirling1(n,k)|.
a(0) = 1; a(n) = Sum_{k=1..n} 4^k * (1 - 3/4 * k/n) * (k-1)! * binomial(n,k) * a(n-k).
PROG
(PARI) a(n) = sum(k=0, n, 4^(n-k)*prod(j=0, k-1, 4*j+1)*abs(stirling(n, k, 1)));
CROSSREFS
Cf. A352073.
Sequence in context: A081876 A139760 A112702 * A296394 A367246 A322576
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Nov 18 2023
STATUS
approved