login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A367429
Expansion of e.g.f. 1 / (1 - log(1 + 4*x))^(3/4).
1
1, 3, 9, 75, 465, 7827, 54489, 1985883, 5684385, 1038408483, -8440926039, 1026884514411, -24803157926799, 1735078791616947, -69866656826056839, 4467425545047012219, -239734355869361550015, 15985164846462976491075, -1031464442408734822175415
OFFSET
0,2
FORMULA
a(n) = Sum_{k=0..n} 4^(n-k) * (Product_{j=0..k-1} (4*j+3)) * Stirling1(n,k).
a(0) = 1; a(n) = Sum_{k=1..n} (-4)^k * (1/4 * k/n - 1) * (k-1)! * binomial(n,k) * a(n-k).
PROG
(PARI) a(n) = sum(k=0, n, 4^(n-k)*prod(j=0, k-1, 4*j+3)*stirling(n, k, 1));
CROSSREFS
Sequence in context: A018576 A027290 A131496 * A132294 A032330 A018604
KEYWORD
sign
AUTHOR
Seiichi Manyama, Nov 18 2023
STATUS
approved