OFFSET
0,8
COMMENTS
The sequence of column k satisfies a linear recurrence with constant coefficients of order k*(k+1)/2 = A000217(k).
LINKS
Alois P. Heinz, Rows n = 0..140, flattened
Wikipedia, Permutation
FORMULA
Sum_{k=1..n} k * T(n,k) = A345341(n).
For fixed k, T(n,k) ~ (2*k)^n / (4^k * k!). - Vaclav Kotesovec, Jul 15 2021
EXAMPLE
T(4,1) = 4: (1234), (1243), (1423), (1432).
Triangle T(n,k) begins:
1;
0, 1;
0, 1, 1;
0, 2, 3, 1;
0, 4, 11, 6, 1;
0, 8, 40, 35, 10, 1;
0, 16, 148, 195, 85, 15, 1;
0, 32, 560, 1078, 665, 175, 21, 1;
0, 64, 2160, 5992, 5033, 1820, 322, 28, 1;
...
MAPLE
b:= proc(n) option remember; `if`(n=0, 1, add(expand(x*
b(n-j)*binomial(n-1, j-1)*ceil(2^(j-2))), j=1..n))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n)):
seq(T(n), n=0..12);
MATHEMATICA
b[n_] := b[n] = If[n == 0, 1, Sum[Expand[x*b[n-j]*
Binomial[n-1, j-1]*Ceiling[2^(j-2)]], {j, n}]];
T[n_] := CoefficientList[b[n], x];
Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Aug 23 2021, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, May 30 2021
STATUS
approved