login
A344855
Number T(n,k) of permutations of [n] having k cycles of the form (c1, c2, ..., c_m) where c1 = min_{i>=1} c_i and c_j = min_{i>=j} c_i or c_j = max_{i>=j} c_i; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
13
1, 0, 1, 0, 1, 1, 0, 2, 3, 1, 0, 4, 11, 6, 1, 0, 8, 40, 35, 10, 1, 0, 16, 148, 195, 85, 15, 1, 0, 32, 560, 1078, 665, 175, 21, 1, 0, 64, 2160, 5992, 5033, 1820, 322, 28, 1, 0, 128, 8448, 33632, 37632, 17913, 4284, 546, 36, 1, 0, 256, 33344, 190800, 280760, 171465, 52941, 9030, 870, 45, 1
OFFSET
0,8
COMMENTS
The sequence of column k satisfies a linear recurrence with constant coefficients of order k*(k+1)/2 = A000217(k).
LINKS
Wikipedia, Permutation
FORMULA
Sum_{k=1..n} k * T(n,k) = A345341(n).
For fixed k, T(n,k) ~ (2*k)^n / (4^k * k!). - Vaclav Kotesovec, Jul 15 2021
EXAMPLE
T(4,1) = 4: (1234), (1243), (1423), (1432).
Triangle T(n,k) begins:
1;
0, 1;
0, 1, 1;
0, 2, 3, 1;
0, 4, 11, 6, 1;
0, 8, 40, 35, 10, 1;
0, 16, 148, 195, 85, 15, 1;
0, 32, 560, 1078, 665, 175, 21, 1;
0, 64, 2160, 5992, 5033, 1820, 322, 28, 1;
...
MAPLE
b:= proc(n) option remember; `if`(n=0, 1, add(expand(x*
b(n-j)*binomial(n-1, j-1)*ceil(2^(j-2))), j=1..n))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n)):
seq(T(n), n=0..12);
MATHEMATICA
b[n_] := b[n] = If[n == 0, 1, Sum[Expand[x*b[n-j]*
Binomial[n-1, j-1]*Ceiling[2^(j-2)]], {j, n}]];
T[n_] := CoefficientList[b[n], x];
Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Aug 23 2021, after Alois P. Heinz *)
CROSSREFS
Row sums give A187251.
Main diagonal gives A000012, lower diagonal gives A000217, second lower diagonal gives A000914.
T(n+1,n) gives A000217.
T(n+2,n) gives A000914.
T(2n,n) gives A345342.
Sequence in context: A100329 A193535 A332645 * A081247 A298753 A173050
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, May 30 2021
STATUS
approved