login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A344856
Bitwise XOR of prime(n) and n^2.
1
3, 7, 12, 23, 18, 41, 32, 83, 70, 121, 102, 181, 128, 239, 206, 309, 282, 377, 298, 471, 496, 427, 578, 537, 528, 705, 702, 891, 804, 1013, 958, 1155, 1224, 1039, 1116, 1415, 1476, 1287, 1366, 1773, 1570, 1617, 1926, 1873, 1836, 2179, 2162, 2527, 2434, 2337
OFFSET
1,1
COMMENTS
This is effectively the bitwise XOR of A000040 and A000290.
FORMULA
a(n) = prime(n) XOR n^2.
a(n) = A003987(A000040(n), A000290(n)).
EXAMPLE
For n=3, a(3) is prime(3) XOR 3^2 = 5 XOR 9 or b(0101) XOR b(1001) = (b)1100, which in base 10 is 12.
MAPLE
a:= n-> Bits[Xor](n^2, ithprime(n)):
seq(a(n), n=1..50); # Alois P. Heinz, May 30 2021
MATHEMATICA
a[n_] := BitXor[n^2, Prime[n]]; Array[a, 50] (* Amiram Eldar, Jun 05 2021 *)
PROG
(Python)
from sympy import primerange, prime
import numpy
def a_vector(n):
primes = list(primerange(0, prime(n)))
squares = [x ** 2 for x in range(1, n)]
return numpy.bitwise_xor(primes, squares)
(PARI) A344856(n) = bitxor(prime(n), n*n); \\ Antti Karttunen, Jun 05 2021
(Python)
from sympy import prime
def A344856(n): return prime(n) ^ n**2 # Chai Wah Wu, Jun 12 2021
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Chris von Csefalvay, May 30 2021
STATUS
approved