login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Bitwise XOR of prime(n) and n^2.
1

%I #40 Jun 13 2021 06:05:23

%S 3,7,12,23,18,41,32,83,70,121,102,181,128,239,206,309,282,377,298,471,

%T 496,427,578,537,528,705,702,891,804,1013,958,1155,1224,1039,1116,

%U 1415,1476,1287,1366,1773,1570,1617,1926,1873,1836,2179,2162,2527,2434,2337

%N Bitwise XOR of prime(n) and n^2.

%C This is effectively the bitwise XOR of A000040 and A000290.

%H Chai Wah Wu, <a href="/A344856/b344856.txt">Table of n, a(n) for n = 1..10000</a>

%H Chris von Csefalvay, <a href="https://datalore.jetbrains.com/view/notebook/3rtSg83skvUfcW6ILJ0bRS">Bitwise prime-square sequences ("Jellyfish Hearts")</a>.

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Bitwise operation">Bitwise operation</a>

%F a(n) = prime(n) XOR n^2.

%F a(n) = A003987(A000040(n), A000290(n)).

%e For n=3, a(3) is prime(3) XOR 3^2 = 5 XOR 9 or b(0101) XOR b(1001) = (b)1100, which in base 10 is 12.

%p a:= n-> Bits[Xor](n^2, ithprime(n)):

%p seq(a(n), n=1..50); # _Alois P. Heinz_, May 30 2021

%t a[n_] := BitXor[n^2, Prime[n]]; Array[a, 50] (* _Amiram Eldar_, Jun 05 2021 *)

%o (Python)

%o from sympy import primerange, prime

%o import numpy

%o def a_vector(n):

%o primes = list(primerange(0, prime(n)))

%o squares = [x ** 2 for x in range(1, n)]

%o return numpy.bitwise_xor(primes, squares)

%o (PARI) A344856(n) = bitxor(prime(n),n*n); \\ _Antti Karttunen_, Jun 05 2021

%o (Python)

%o from sympy import prime

%o def A344856(n): return prime(n) ^ n**2 # _Chai Wah Wu_, Jun 12 2021

%Y Cf. A000040, A000290, A003987, A070883, A169810.

%K nonn,base

%O 1,1

%A _Chris von Csefalvay_, May 30 2021