login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A344854
The number of equilateral triangles with vertices from the vertices of the n-dimensional hypercube.
3
0, 0, 0, 8, 64, 320, 2240, 17920, 121856, 831488, 6215680, 46069760, 333639680, 2468257792, 18538397696, 138630955008, 1038902624256, 7848847736832, 59474614157312, 451122104369152, 3432752856694784, 26200670667276288, 200322520455315456, 1534319564383322112
OFFSET
0,4
LINKS
Albert Stadler, Problems and Solutions, Problem 12261, The American Mathematical Monthly, 128:6 (2021), 563.
FORMULA
a(n) = 2^n*Sum_{k=1..floor(n/3)}n!/(6*(n - 3*k)!*k!^3). - Drake Thomas, May 30 2021
a(n) = 2^n*(hypergeom([-n/3, (1 - n)/3, (2 - n)/3], [1, 1], -27) - 1) / 6. - derived from Drake Thomas's formula by Peter Luschny, May 31 2021
From Vaclav Kotesovec, Jun 01 2021: (Start)
E.g.f.: exp(2*x)*(-1 + hypergeom([], [1, 1], 8*x^3))/6.
Recurrence: (n-3)*n^2*a(n) = 2*(4*n^3 - 15*n^2 + 13*n - 4)*a(n-1) - 4*(n-1)*(6*n^2 - 21*n + 16)*a(n-2) + 8*(n-2)*(n-1)*(31*n-90)*a(n-3) - 448*(n-3)*(n-2)*(n-1)*a(n-4).
a(n) ~ 8^n / (3^(3/2)*Pi*n). (End)
Let Exp(x, m) = Sum_{k>=0} (x^k / k!)^m, then the above e.g.f. can be stated as:
a(n) = (n!/3!) * [x^n] Exp(2*x, 1)*(Exp(2*x, 3) - 1). - Peter Luschny, Jun 01 2021
EXAMPLE
For n = 3, the a(3) = 8 equilateral triangles are
(0,0,0), (1,1,0), and (1,0,1);
(0,0,0), (1,1,0), and (0,1,1);
(0,0,0), (1,0,1), and (0,1,1);
(1,0,0), (0,1,0), and (0,0,1);
(1,0,0), (0,1,0), and (1,1,1);
(1,0,0), (0,0,1), and (1,1,1);
(0,1,0), (0,0,1), and (1,1,1); and
(1,1,0), (1,0,1), and (0,1,1).
For n = 6, the a(6) = 2240 equilateral triangles are
(0,0,0,0,0,0),(0,0,0,0,1,1),(0,0,0,1,0,1); and
(0,0,0,0,0,0),(0,0,1,1,1,1),(1,1,0,0,1,1); and all of the equilateral triangles that can be generated by mapping these under the 2^6*6! symmetries of the 6-cube.
MAPLE
a := n -> 2^n*(hypergeom([-n/3, (1 - n)/3, (2 - n)/3], [1, 1], -27) - 1) / 6:
seq(simplify(a(n)), n = 0..23); # Peter Luschny, May 31 2021
MATHEMATICA
(* Based on Drake Thomas's formula *)
A344854[n_] := 2^n*Sum[n!/(6*(n - 3 k)!*(k!)^3), {k, 1, Floor[n/3]}]
nmax = 20; CoefficientList[Series[E^(2*x)*(-1 + HypergeometricPFQ[{}, {1, 1}, 8*x^3])/6, {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Jun 01 2021 *)
PROG
(Python)
from sympy import hyperexpand, Rational
from sympy.functions import hyper
def A344854(n): return (hyperexpand(hyper((Rational(-n, 3), Rational(1-n, 3), Rational(2-n, 3)), (1, 1), -27))-1)//3<<n-1 if n else 0 # Chai Wah Wu, Jan 04 2024
CROSSREFS
Cf. A016283 (rectangles), A345340 (squares).
Sequence in context: A189065 A189190 A188875 * A223843 A356703 A267189
KEYWORD
nonn
AUTHOR
Peter Kagey, May 30 2021
EXTENSIONS
a(9)-a(23) from Drake Thomas, May 30 2021
STATUS
approved