The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A100329 a(n) = -a(n-1)-a(n-2)-a(n-3)+a(n-4), a(0)=0, a(1)=1, a(2)=-1, a(3)=0. 3
 0, 1, -1, 0, 0, 2, -3, 1, 0, 4, -8, 5, -1, 8, -20, 18, -7, 17, -48, 56, -32, 41, -113, 160, -120, 114, -267, 433, -400, 348, -648, 1133, -1233, 1096, -1644, 2914, -3599, 3425, -4384, 7472, -10112, 10449, -12193, 19328, -27696, 31010, -34835, 50849, -74720, 89716, -100680 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,6 COMMENTS Reflected tetranacci numbers: a(n) = A000078(-n). Let Q(n) = A000078, then a(n) = (-1)^(n+1)(Q(n)^3 - 2Q(n-1)Q(n)Q(n+1) + Q(n-2)Q(n+1)^2 + Q(n-1)^2Q(n+2) - Qn(-2)Q(n)Q(n+2)) derived from powers of the inverse of a generalized Fibonacci matrix. LINKS Alois P. Heinz, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (-1,-1,-1,1). FORMULA G.f.: x/(1+x+x^2+x^3-x^4). G.f. of absolute values: x/(1-x+x^2-x^3-x^4). - Vaclav Kotesovec, Oct 18 2013 a(n) = term (1,4) in the 4x4 matrix [1,1,0,0; 1,0,1,0; 1,0,0,1; 1,0,0,0]^(-n). - Alois P. Heinz, Jun 12 2008 MAPLE a:= n-> (<<1|1|0|0>, <1|0|1|0>, <1|0|0|1>, <1|0|0|0>>^(-n))[1, 4]: seq(a(n), n=0..50);  # Alois P. Heinz, Jun 12 2008 MATHEMATICA CoefficientList[Series[x/(1+x+x^2+x^3-x^4), {x, 0, 50}], x] LinearRecurrence[{-1, -1, -1, 1}, {0, 1, -1, 0}, 60] (* Harvey P. Dale, May 20 2018 *) CROSSREFS Cf. tribonacci A000073, reflected tribonacci A057597. Sequence in context: A115352 A275808 A038554 * A193535 A332645 A344855 Adjacent sequences:  A100326 A100327 A100328 * A100330 A100331 A100332 KEYWORD sign,easy AUTHOR Mitch Harris Nov 16 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 27 23:16 EDT 2021. Contains 346316 sequences. (Running on oeis4.)