login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A345341
Total number of cycles in all permutations of [n] having cycles of the form (c1, c2, ..., c_m) where c1 = min_{i>=1} c_i and c_j = min_{i>=j} c_i or c_j = max_{i>=j} c_i.
2
0, 1, 3, 11, 48, 238, 1318, 8054, 53728, 387836, 3007940, 24917668, 219375104, 2043792680, 20074003368, 207186660712, 2240632127232, 25324980662544, 298471543286448, 3660469596095280, 46627358889945344, 615855211031451104, 8421273619742748256
OFFSET
0,3
LINKS
Wikipedia, Permutation
FORMULA
a(n) = Sum_{k=1..n} k * A344855(n,k).
MAPLE
b:= proc(n) option remember; `if`(n=0, [1, 0], add((p-> p+[0,
p[1]])(b(n-j)*binomial(n-1, j-1)*ceil(2^(j-2))), j=1..n))
end:
a:= n-> b(n)[2]:
seq(a(n), n=0..23);
MATHEMATICA
b[n_] := b[n] = If[n == 0, {1, 0}, Sum[Function[p, p + {0,
p[[1]]}][b[n-j] Binomial[n-1, j-1] Ceiling[2^(j-2)]], {j, 1, n}]];
a[n_] := b[n][[2]];
Table[a[n], {n, 0, 23}] (* Jean-François Alcover, Aug 25 2021, after Alois P. Heinz *)
CROSSREFS
Cf. A344855.
Sequence in context: A362741 A192399 A233162 * A186185 A367874 A317170
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Jun 14 2021
STATUS
approved