login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A145144
2nd column of A145142.
2
1, 3, 11, 50, 634, 6804, 71868, 789984, 11025936, 174509280, 2940903360, 51707242080, 987781034304, 20520063789120, 456583392034560, 10712403843563520, 265316096850923520, 6948996535924162560
OFFSET
3,2
MAPLE
row:= proc(n) option remember; local f, i, x; f:= unapply (simplify (sum ('cat (a||i) *x^i', 'i'=0..n-1) ), x); unapply (subs (solve ({seq(f(i+1)= coeftayl (x/ (1-x-x^4)/ (1-x)^i, x=0, n), i=0..n-1)}, {seq (cat (a||i), i=0..n-1)}), sum ('cat (a||i) *x^i', 'i'=0..n-1) ), x); end: a:= n-> `if` (n=0, 0, coeftayl (row(n)(x), x=0, 2) *(n-1)!): seq (a(n), n=3..23);
MATHEMATICA
row[n_] := row[n] = Module[{f, a, eq}, f = Function[x, Sum[a[k]*x^k, {k, 0, n-1}]]; eq = Table[f[k+1] == SeriesCoefficient[x/(1-x-x^4)/(1-x)^k, {x, 0, n}], {k, 0, n-1}]; List @@ f[1] /. Solve[eq] // First]; a[n_] := row[n][[3]]*(n-1)!; Table[a[n], {n, 3, 23}] (* Jean-François Alcover, Feb 14 2014, after Maple *)
CROSSREFS
Cf. A145153.
Sequence in context: A024335 A203009 A024336 * A367560 A284702 A191341
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Oct 03 2008
STATUS
approved