OFFSET
0,2
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
Michael Somos, Introduction to Ramanujan theta functions
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
f(a,b) = 1 + Sum_{k=1..oo} (ab)^(k(k-1)/2)*(a^k+b^k). - N. J. A. Sloane, Jan 30 2017
Euler transform of a period 36 sequence.
G.f.: (Sum_{k in Z} x^k^2) * (Sum_{k in Z} x^(9*k^2 + 4*k)).
G.f.: Product_{k>0} (1 + x^(2*k-1))^2 * (1 - x^(2*k)) * (1 - x^(18*k-13)) * (1 - x^(18*k-5)) * (1 - x^(18*k)).
a(n) = A122865(3*n + 1) = A122856(6*n + 2) = A258278(6*n + 2). a(n) = - A256269(9^n + 4). 4 * a(n) = A004018(9*n + 4).
a(n) = b(9*n + 4) with b = A002654, A035154, A113446, A122864, A125061, A129448, A138950, A163746, A256276, A258228, A258256.
EXAMPLE
G.f. = 1 + 2*x + 2*x^4 + x^5 + 2*x^6 + 4*x^9 + x^13 + 4*x^14 + 2*x^16 + ...
G.f. = q^4 + 2*q^13 + 2*q^40 + q^49 + 2*q^58 + 4*q^85 + q^121 + 4*q^130 + ...
MATHEMATICA
a[ n_] := If[ n < 0, 0, DivisorSum[ 9 n + 4, KroneckerSymbol[ -4, #] &]];
a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, x] QPochhammer[ -x^5, x^18] QPochhammer[ -x^13, x^18] QPochhammer[ x^18], {x, 0, n}];
a[ n_] := If[ n < 0, 0, Times @@ (Which[ # < 3, 1, Mod[#, 4] == 1, #2 + 1, True, (1 + (-1)^#2) / 2] & @@@ FactorInteger[ 9 n + 4])];
PROG
(PARI) {a(n) = if( n<0, 0, sumdiv(9*n + 4, d, (d%4==1) - (d%4==3)))};
(PARI) {a(n) = if( n<0, 0, my(m = 9*n + 4, k, s); forstep(j=0, sqrtint(m), 3, if( issquare(m - j^2, &k) && (k%9 == 2 || k%9 == 7), s+=(j>0)+1)); s)};
(PARI) {a(n) = if( n<0, 0, my(A, p, e); A = factor(9*n + 4); prod(k=1, matsize(A)[1], [p, e] = A[k, ]; if(p==2, 1, p%4==1, e+1, 1-e%2)))};
CROSSREFS
KEYWORD
nonn
AUTHOR
Michael Somos, Jan 26 2017
STATUS
approved