login
A273875
Number of ordered ways to write n as w^2 + x^2 + y^2 + z^2 with x*y + 2*y*z + 4*z*x a nonnegative cube, where w,x,y,z are integers with w >= 0 and x > 0.
1
1, 2, 2, 2, 4, 3, 1, 1, 4, 3, 1, 1, 3, 3, 1, 1, 3, 6, 4, 6, 5, 2, 4, 2, 4, 5, 5, 5, 5, 5, 3, 2, 4, 6, 4, 8, 5, 5, 3, 4, 7, 7, 6, 3, 10, 2, 4, 1, 3, 10, 4, 8, 4, 8, 5, 4, 5, 9, 5, 4, 4, 4, 10, 1, 11, 11, 4, 10, 10, 4, 4, 9, 6, 9, 7, 5, 6, 8, 5, 2
OFFSET
1,2
COMMENTS
Conjecture: (i) a(n) > 0 for all n > 0.
(ii) Any positive integer can be written as w^2 + x^2 + y^2 + z^2 with x*y + 2*y*z + 4*z*x = 4*t^3 for some t = 0,1,2,..., where w,x,y,z are integers with x > 0. Also, any natural number can be written as w^2 + x^2 + y^2 + z^2 with x*y + 3*y*z + 4*z*x = 3*t^3 for some t = 0,1,2,..., where w,x,y,z are integers with x >= 0.
(iii) For each triple (a,b,c) = (1,1,2), (1,2,3), (3,2,1), (4,1,1), any natural number can be written as w^2 + x^2 + y^2 + z^2 with a*x*y + b*y*z - c*z*w a nonnegative cube, where w,x,y are nonnegative integers and z is an integer.
For more conjectural refinements of Lagrange's four-square theorem, see the author's preprint arXiv:1604.06723.
LINKS
Yu-Chen Sun and Zhi-Wei Sun, Two refinements of Lagrange's four-square theorem, arXiv:1605.03074 [math.NT], 2016.
Zhi-Wei Sun, Refining Lagrange's four-square theorem, arXiv:1604.06723 [math.GM], 2016.
EXAMPLE
a(1) = 1 since 1 = 0^2 + 1^2 + 0^2 + 0^2 with 1*0 + 2*0*0 + 4*0*1 = 0^3.
a(7) = 1 since 7 = 2^2 + 1^2 + (-1)^2 + 1^2 with 1*(-1) + 2*(-1)*1 + 4*1*1 = 1^3.
a(8) = 1 since 8 = 2^2 + 2^2 + 0^2 + 0^2 with 2*0 + 2*0*0 + 4*0*2 = 0^3.
a(11) = 1 since 11 = 3^2 + 1^2 + 1^2 + 0^2 with 1*1 + 2*1*0 + 4*0*1 = 1^3.
a(12) = 1 since 12 = 3^2 + 1^2 + (-1)^2 + 1^2 with 1*(-1) + 2*(-1)*1 + 4*1*1 = 1^3.
a(15) = 1 since 15 = 1^2 + 1^2 + (-3)^2 + (-2)^2 with 1*(-3) + 2*(-3)*(-2) + 4*(-2)*1 = 1^3.
a(16) = 1 since 16 = 0^2 + 4^2 + 0^2 + 0^2 with 4*0 + 2*0*0 + 4*0*4 = 0^3.
a(48) = 1 since 48 = 4^2 + 4^2 + 0^2 + 4^2 with 4*0 + 2*0*4 + 4*4*4 = 4^3.
a(112) = 1 since 112 = 4^2 + 8^2 + (-4)^2 + 4^2 with 8*(-4) + 2*(-4)*4 + 4*4*8 = 4^3.
a(131) = 1 since 131 = 9^2 + 3^2 + (-4)^2 + 5^2 with 3*(-4) + 2*(-4)*5 + 4*5*3 = 2^3.
a(176) = 1 since 176 = 12^2 + 4^2 + 0^2 + 4^2 with 4*0 + 2*0*4 + 4*4*4 = 4^3.
a(224) = 1 since 224 = 0^2 + 8^2 + 4^2 + 12^2 with 8*4 + 2*4*12 + 4*12*8 = 8^3.
a(304) = 1 since 304 = 4^2 + 4^2 + (-16)^2 + (-4)^2 with 4*(-16) + 2*(-16)*(-4) + 4*(-4)*4 = 0^3.
a(944) = 1 since 944 = 20^2 + 12^2 + (-16)^2 + 12^2 with 12*(-16) + 2*(-16)*12 + 4*12*12 = 0^3.
a(4784) = 1 since 4784 = 60^2 + 28^2 + (-16)^2 + 12^2 with 28*(-16) + 2*(-16)*12 + 4*12*28 = 8^3.
a(8752) = 1 since 8752 = 92^2 + 4^2 + (-16)^2 + (-4)^2 with 4*(-16) + 2*(-16)*(-4) + 4*(-4)*4 = 0^3.
MATHEMATICA
SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]]
CQ[n_]:=QQ[n]=n>=0&&IntegerQ[n^(1/3)]
Do[r=0; Do[If[SQ[n-x^2-y^2-z^2]&&CQ[x*(-1)^j*y+2(-1)^(j+k)*y*z+4*(-1)^k*z*x], r=r+1], {x, 1, Sqrt[n]}, {y, 0, Sqrt[n-x^2]}, {j, 0, Min[1, y]}, {z, 0, Sqrt[n-x^2-y^2]}, {k, 0, Min[1, z]}]; Print[n, " ", r]; Continue, {n, 1, 80}]
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Jun 02 2016
STATUS
approved