login
A121806
a(n) = f(prime(n*2+1) mod 3, prime(n*2+2) mod 3) where f(1,1) = 3, f(1,2) = 1, f(2,1) = 2, f(2,2) = 4.
0
2, 2, 2, 4, 3, 2, 4, 2, 1, 3, 4, 1, 1, 1, 1, 2, 2, 3, 4, 2, 2, 2, 3, 2, 4, 1, 4, 2, 1, 1, 1, 1, 3, 2, 4, 3, 1, 2, 2, 2, 2, 1, 2, 2, 4, 1, 1, 4, 3, 1, 4, 3, 4, 2, 3, 2, 1, 1, 4, 3, 4, 1, 1, 3, 1, 3, 2, 2, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 4, 3, 1, 2, 2, 1, 1, 3, 1, 1, 4, 3, 1, 1, 1, 4, 3, 4, 2
OFFSET
1,1
FORMULA
a(n) = f(prime(n*2+1) mod 3, prime(n*2+2) mod 3) where f(1,1) = 3, f(1,2) = 1, f(2,1) = 2, f(2,2) = 4. - Jason Yuen, Sep 15 2024
MATHEMATICA
a = Partition[Table[1 + Mod[Prime[n], 3], {n, 3, 203}], 2] /. {2, 3} -> 1 /. {3, 2} -> 2 /. { 2, 2} -> 3 /. {3, 3} -> 4
PROG
(PARI) a(n) = my(f(i, j)=[3, 1, 2, 4][i*2+j-2]); f(prime(n*2+1)%3, prime(n*2+2)%3) \\ Jason Yuen, Sep 15 2024
CROSSREFS
Sequence in context: A182154 A273875 A054709 * A056944 A283681 A222819
KEYWORD
nonn,uned,less,easy
AUTHOR
Roger L. Bagula, Aug 29 2006
EXTENSIONS
New name from Jason Yuen, Sep 15 2024
STATUS
approved