login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A273878 Numerator of (2*(n+1)!/(n+2)). 0
1, 4, 3, 48, 40, 1440, 1260, 8960, 72576, 7257600, 6652800, 958003200, 889574400, 11623772160, 163459296000, 41845579776000, 39520825344000, 12804747411456000, 12164510040883200, 231704953159680000, 4644631106519040000 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

The moments, i.e. E(X^n) = int(x^n * p(x), x = 0..infinity) for n > 0, of the probability density function p(x) = 2*x*E(x, 1, 1), see A163931, lead to this sequence.

LINKS

Table of n, a(n) for n=0..20.

J. W. Meijer and N. H. G. Baken, The Exponential Integral Distribution, Statistics and Probability Letters, Volume 5, No.3, April 1987. pp 209-211.

FORMULA

a(n) = numer(2*(n+1)!/(n+2))

a(n) = (n+1) * A090586(n+1)

a(2*n) = A110468(n) and a(2*n+1) = (2*n)!*A085250(n+1)/A128060(n+2).

EXAMPLE

The first few moments of p(x) are: 1, 4/3, 3, 48/5, 40, 1440/7, … .

MAPLE

a := proc(n): numer(2*(n+1)!/(n+2)) end: seq(a(n), n=0..20);

PROG

(PARI) a(n) = numerator(2*(n+1)!/(n+2)) \\ Felix Fröhlich, Jun 09 2016

CROSSREFS

Cf. A090585 (denominators), A090586, A085250, A110468, A128059, A128060, A163931.

Sequence in context: A324671 A249226 A328193 * A013335 A298314 A299389

Adjacent sequences:  A273875 A273876 A273877 * A273879 A273880 A273881

KEYWORD

nonn,frac,easy

AUTHOR

Johannes W. Meijer, Jun 08 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 30 18:22 EST 2020. Contains 338807 sequences. (Running on oeis4.)