login
A133675
Negative discriminants with form class number 1 (negated).
11
3, 4, 7, 8, 11, 12, 16, 19, 27, 28, 43, 67, 163
OFFSET
1,1
COMMENTS
The list on p. 260 of Cox is missing -12, the list in Theorem 7.30 on p. 149 is correct. - Andrew V. Sutherland, Sep 02 2012
Let b(k) be the number of integer solutions of f(x,y) = k, where f(x,y) is the principal binary quadratic form with discriminant d<0 (i.e., f(x,y) = x^2 - (d/4)*y^2 if 4|d, x^2 + x*y + ((1-d)/4)*y^2 otherwise), then this sequence lists |d| such that {b(k)/b(1): k>=1} is multiplicative. See Crossrefs for the actual sequences. - Jianing Song, Nov 20 2019
REFERENCES
D. A. Cox, Primes of the form x^2+ny^2, Wiley, New York, 1989, pp. 149, 260.
D. E. Flath, Introduction to Number Theory, Wiley-Interscience, 1989.
PROG
(PARI) ok(n)={(-n)%4<2 && quadclassunit(-n).no == 1} \\ Andrew Howroyd, Jul 20 2018
CROSSREFS
The sequences {b(k): k>=0}: A004016 (d=-3), A004018 (d=-4), A002652 (d=-7), A033715 (d=-8), A028609 (d=-11), A033716 (d=-12), A004531 (d=-16), A028641 (d=-19), A138805 (d=-27), A033719 (d=-28), A138811 (d=-43), A318984 (d=-67), A318985 (d=-163).
The sequences {b(k)/b(1): k>=1}: A002324 (d=-3), A002654 (d=-4), A035182 (d=-7), A002325 (d=-8), A035179 (d=-11), A096936 (d=-12), A113406 (d=-16), A035171 (d=-19), A138806 (d=-27), A110399 (d=-28), A035147 (d=-43), A318982 (d=-67), A318983 (d=-163).
Sequence in context: A300950 A368083 A067186 * A332068 A173467 A050122
KEYWORD
fini,full,nonn,nice
AUTHOR
N. J. A. Sloane, May 16 2003
EXTENSIONS
Corrected by David Brink, Dec 29 2007
STATUS
approved