login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A138805
Theta series of quadratic form x^2 + x*y + 7*y^2.
3
1, 2, 0, 0, 2, 0, 0, 4, 0, 6, 0, 0, 0, 4, 0, 0, 2, 0, 0, 4, 0, 0, 0, 0, 0, 2, 0, 6, 4, 0, 0, 4, 0, 0, 0, 0, 6, 4, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 6, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 12, 2, 0, 0, 4, 0, 0, 0, 0, 0, 4, 0, 0, 4, 0, 0, 4, 0, 6, 0, 0, 0, 0, 0
OFFSET
0,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions.
FORMULA
Expansion of theta_3(q) * theta_3(q^27) + theta_2(q) * theta_2(q^27) in powers of q.
Expansion of phi(q) * phi(q^27) + 4 * q^7 * psi(q^2) * psi(q^54) in powers of q where phi(), psi() are Ramanujan theta functions.
Moebius transform is period 27 sequence [ 2, -2, -2, 2, -2, 2, 2, -2, 6, 2, -2, -2, 2, -2, 2, 2, -2, -6, 2, -2, -2, 2, -2, 2, 2, -2, 0, ...].
a(n) = 2*b(n) where b() is multiplicative with b(3^e) = 3 if e>1, b(p^e) = e+1 if p == 1 (mod 6), b(p^e) = (1 + (-1)^e) / 2 if p == 5 (mod 6).
G.f. is a period 1 Fourier series which satisfies f(-1 / (27 t)) = 27^(1/2) (t/i) f(t) where q = exp(2 Pi i t).
G.f.: Sum_{i, j in Z} x^(i*i + i*j + 7*j*j).
a(3*n + 2) = a(4*n + 2) = 0.
a(n) = 2 * A138806(n) unless n=0. a(9*n) = A004016(n).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 2*Pi/(3*sqrt(3)) = 1.209199... (A248897). - Amiram Eldar, Dec 29 2023
EXAMPLE
G.f. = 1 + 2*q + 2*q^4 + 4*q^7 + 6*q^9 + 4*q^13 + 2*q^16 + 4*q^19 + 2*q^25 + ...
MATHEMATICA
a[ n_] := If[ n < 1, Boole[n == 0], 2 DivisorSum[ n, KroneckerSymbol[ -3, n/#] {1, 1, 0, 1, 1, 0, 1, 1, 3}[[Mod[#, 9, 1]]] &]]; (* Michael Somos, Sep 08 2015 *)
a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, q] EllipticTheta[ 3, 0, q^27] + EllipticTheta[ 2, 0, q] EllipticTheta[ 2, 0, q^27], {q, 0, n}]; (* Michael Somos, Sep 08 2015 *)
PROG
(PARI) {a(n) = if( n<0, 0, polcoeff( 1 + 2 * x * Ser(qfrep([2, 1; 1, 14], n, 1)), n))};
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^2 + A) * eta(x^54 + A))^5 / (eta(x + A) * eta(x^4 + A) * eta(x^27 + A) * eta(x^108 + A))^2 + 4 * x^7 * (eta(x^4 + A) * eta(x^108 + A))^2 / (eta(x^2 + A) * eta(x^54 + A)), n))};
(PARI) {a(n) = if( n<1, n==0, 2 * sumdiv(n, d, kronecker(-3, n/d) * [ 3, 1, 1, 0, 1, 1, 0, 1, 1][n%9 + 1]))}; /* Michael Somos, Sep 08 2015 */
(Magma) A := Basis( ModularForms( Gamma1(27), 1), 87); A[1] + 2*A[2] + 2*A[5] + 4*A[8] + 6*A[10] + 4*A[14] + 2*A[15]; /* Michael Somos, Sep 08 2015 */
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Michael Somos, Mar 30 2008
STATUS
approved