login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Theta series of quadratic form x^2 + x*y + 7*y^2.
3

%I #18 Dec 29 2023 03:49:21

%S 1,2,0,0,2,0,0,4,0,6,0,0,0,4,0,0,2,0,0,4,0,0,0,0,0,2,0,6,4,0,0,4,0,0,

%T 0,0,6,4,0,0,0,0,0,4,0,0,0,0,0,6,0,0,4,0,0,0,0,0,0,0,0,4,0,12,2,0,0,4,

%U 0,0,0,0,0,4,0,0,4,0,0,4,0,6,0,0,0,0,0

%N Theta series of quadratic form x^2 + x*y + 7*y^2.

%C Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

%H G. C. Greubel, <a href="/A138805/b138805.txt">Table of n, a(n) for n = 0..10000</a>

%H Michael Somos, <a href="/A010815/a010815.txt">Introduction to Ramanujan theta functions</a>, 2019.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/RamanujanThetaFunctions.html">Ramanujan Theta Functions</a>.

%F Expansion of theta_3(q) * theta_3(q^27) + theta_2(q) * theta_2(q^27) in powers of q.

%F Expansion of phi(q) * phi(q^27) + 4 * q^7 * psi(q^2) * psi(q^54) in powers of q where phi(), psi() are Ramanujan theta functions.

%F Moebius transform is period 27 sequence [ 2, -2, -2, 2, -2, 2, 2, -2, 6, 2, -2, -2, 2, -2, 2, 2, -2, -6, 2, -2, -2, 2, -2, 2, 2, -2, 0, ...].

%F a(n) = 2*b(n) where b() is multiplicative with b(3^e) = 3 if e>1, b(p^e) = e+1 if p == 1 (mod 6), b(p^e) = (1 + (-1)^e) / 2 if p == 5 (mod 6).

%F G.f. is a period 1 Fourier series which satisfies f(-1 / (27 t)) = 27^(1/2) (t/i) f(t) where q = exp(2 Pi i t).

%F G.f.: Sum_{i, j in Z} x^(i*i + i*j + 7*j*j).

%F a(3*n + 2) = a(4*n + 2) = 0.

%F a(n) = 2 * A138806(n) unless n=0. a(9*n) = A004016(n).

%F Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 2*Pi/(3*sqrt(3)) = 1.209199... (A248897). - _Amiram Eldar_, Dec 29 2023

%e G.f. = 1 + 2*q + 2*q^4 + 4*q^7 + 6*q^9 + 4*q^13 + 2*q^16 + 4*q^19 + 2*q^25 + ...

%t a[ n_] := If[ n < 1, Boole[n == 0], 2 DivisorSum[ n, KroneckerSymbol[ -3, n/#] {1, 1, 0, 1, 1, 0, 1, 1, 3}[[Mod[#, 9, 1]]] &]]; (* _Michael Somos_, Sep 08 2015 *)

%t a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, q] EllipticTheta[ 3, 0, q^27] + EllipticTheta[ 2, 0, q] EllipticTheta[ 2, 0, q^27], {q, 0, n}]; (* _Michael Somos_, Sep 08 2015 *)

%o (PARI) {a(n) = if( n<0, 0, polcoeff( 1 + 2 * x * Ser(qfrep([2, 1; 1, 14], n, 1)), n))};

%o (PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^2 + A) * eta(x^54 + A))^5 / (eta(x + A) * eta(x^4 + A) * eta(x^27 + A) * eta(x^108 + A))^2 + 4 * x^7 * (eta(x^4 + A) * eta(x^108 + A))^2 / (eta(x^2 + A) * eta(x^54 + A)), n))};

%o (PARI) {a(n) = if( n<1, n==0, 2 * sumdiv(n, d, kronecker(-3, n/d) * [ 3, 1, 1, 0, 1, 1, 0, 1, 1][n%9 + 1]))}; /* _Michael Somos_, Sep 08 2015 */

%o (Magma) A := Basis( ModularForms( Gamma1(27), 1), 87); A[1] + 2*A[2] + 2*A[5] + 4*A[8] + 6*A[10] + 4*A[14] + 2*A[15]; /* _Michael Somos_, Sep 08 2015 */

%Y Cf. A004016, A138806, A248897.

%Y Cf. A000122, A000700, A010054, A121373.

%K nonn,easy

%O 0,2

%A _Michael Somos_, Mar 30 2008