login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A133673
a(n) = n*L(n) + (n-1)*L(n-1) where L(n) is the Lucas number.
1
7, 18, 40, 83, 163, 311, 579, 1060, 1914, 3419, 6053, 10637, 18575, 32262, 55772, 96019, 164711, 281635, 480171, 816536, 1385262, 2345083, 3962185, 6682393, 11251543, 18916026, 31756624, 53243795, 89160619, 149135759, 249187923, 415946572, 693648930
OFFSET
2,1
COMMENTS
For n>2, two evens followed by four odds.
FORMULA
From R. J. Mathar, Jul 08 2009, Jul 13 2009: (Start)
G.f.: -x^2*(-7-4*x+3*x^2+x^3)/(x^2+x-1)^2.
a(n) = 2*a(n-1)+a(n-2)-2*a(n-3)-a(n-4).
a(n) = A146005(n) + A146005(n-1). (End)
EXAMPLE
For n=2, a(2) = 7;
For n=21, a(21) = 816536.
MATHEMATICA
Total/@Partition[Times@@@Table[{n, LucasL[n]}, {n, 30}], 2, 1] (* or *) LinearRecurrence[{2, 1, -2, -1}, {7, 18, 40, 83}, 30](* Harvey P. Dale, Oct 21 2011 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Parthasarathy Nambi, Dec 29 2007
EXTENSIONS
Typo in A-numbers corrected by R. J. Mathar, Jul 13 2009
More terms from Harvey P. Dale, Oct 21 2011
STATUS
approved