login
This site is supported by donations to The OEIS Foundation.

 

Logo

The October issue of the Notices of the Amer. Math. Soc. has an article about the OEIS.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A002939 a(n) = 2*n*(2*n-1). 72
0, 2, 12, 30, 56, 90, 132, 182, 240, 306, 380, 462, 552, 650, 756, 870, 992, 1122, 1260, 1406, 1560, 1722, 1892, 2070, 2256, 2450, 2652, 2862, 3080, 3306, 3540, 3782, 4032, 4290, 4556, 4830, 5112, 5402, 5700, 6006, 6320, 6642, 6972, 7310, 7656, 8010, 8372 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Write 0,1,2,... in a spiral; sequence gives numbers on one of 4 diagonals (see Example section).

For n>1 this is the Engel expansion of cosh(1), A118239. - Benoit Cloitre, Mar 03 2002

a(n) = A125199(n,n) for n>0. - Reinhard Zumkeller, Nov 24 2006

Central terms of the triangle in A195437: a(n+1) = A195437(2*n,n). - Reinhard Zumkeller, Nov 23 2011

For n>2, the terms represent the sums of those primitive Pythagorean triples with hypotenuse (H) one unit longer than the longest side (L), or H = L + 1. - Richard R. Forberg, Jun 09 2015

For n>1, a(n) is the perimeter of a Pythagorean triangle with an odd leg 2*n-1. - Agola Kisira Odero, Apr 26 2016

REFERENCES

R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 2nd ed., 1994, p. 99.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..10000

A. M. Nemirovsky et al., Marriage of exact enumeration and 1/d expansion methods: lattice model of dilute polymers, J. Statist. Phys., 67 (1992), 1083-1108.

R. Tijdeman, Some applications of Diophantine approximation, pp. 261-284 of Surveys in Number Theory (Urbana, May 21, 2000), ed. M. A. Bennett et al., Peters, 2003.

Index entries for linear recurrences with constant coefficients, signature (3,-3,1).

FORMULA

Sum_{n >= 1} 1/a(n) = log(2) (cf. Tijdeman).

Log(2) = Sum_{n >= 1} ((1 - 1/2) + (1/3 - 1/4) + (1/5 - 1/6) + (1/7 - 1/8) + ...) = Sum_{n >= 0} (-1)^n/(n+1). Log(2) = Integral_{x=0..1} 1/(1+x) dx. - Gary W. Adamson, Jun 22 2003

a(n) = A000384(n)*2. - Omar E. Pol, May 14 2008

From R. J. Mathar, Apr 23 2009: (Start)

a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).

G.f.: 2*x*(1+3*x)/(1-x)^3. (End)

a(n) = a(n-1) + 8*n - 6 (with a(0)=0). - Vincenzo Librandi, Nov 12 2010

a(n) = A118729(8n+1). - Philippe Deléham, Mar 26 2013

Product_{k=1..n} a(k) = (2n)!. - Tony Foster III, Sep 06 2015

E.g.f.: 2*x*(1 + 2*x)*exp(x). - Ilya Gutkovskiy, Apr 29 2016

a(n) = A002943(-n) for all n in Z. - Michael Somos, Jan 28 2017

0 = 12 + a(n)*(-8 + a(n) - 2*a(n+1)) + a(n+1)*(-8 + a(n+1)) for all n in Z. - Michael Somos, Jan 28 2017

EXAMPLE

G.f. = 2*x + 12*x^2 + 30*x^3 + 56*x^4 + 90*x^5 + 132*x^6 + 182*x^7 + 240*x^8 + ...

On a square lattice, place the nonnegative integers at lattice points forming a spiral as follows: place "0" at the origin; then move one step in any of the four cardinal directions and place "1" at the lattice point reached; then turn 90 degrees in either direction and place a "2" at the next lattice point; then make another 90-degree turn in the same direction and place a "3" at the lattice point; etc. The terms of the sequence will lie along one of the diagonals, as seen in the example below:

   99  64--65--66--67--68--69--70--71--72

    |   |                               |

   98  63  36--37--38--39--40--41--42  73

    |   |   |                       |   |

   97  62  35  16--17--18--19--20  43  74

    |   |   |   |               |   |   |

   96  61  34  15   4---5---6  21  44  75

    |   |   |   |   |       |   |   |   |

   95  60  33  14   3  *0*  7  22  45  76

    |   |   |   |   |   |   |   |   |   |

   94  59  32  13  *2*--1   8  23  46  77

    |   |   |   |           |   |   |   |

   93  58  31 *12*-11--10---9  24  47  78

    |   |   |                   |   |   |

   92  57 *30*-29--28--27--26--25  48  79

    |   |                           |   |

   91 *56*-55--54--53--52--51--50--49  80

    |                                   |

  *90*-89--88--87--86--85--84--83--82--81

[Edited by Jon E. Schoenfield, Jan 01 2017]

MAPLE

A002939:=n->2*n*(2*n-1): seq(A002939(n), n=0..100); # Wesley Ivan Hurt, Jan 28 2017

MATHEMATICA

Table[2*n*(2*n-1), {n, 0, 50}] (* Vladimir Joseph Stephan Orlovsky, Oct 25 2008 *)

2#(2#-1)&/@Range[0, 50]  (* Harvey P. Dale, Mar 06 2011 *)

PROG

(PARI) a(n)=2*binomial(2*n, 2) \\ Charles R Greathouse IV, Jul 25 2011

(MAGMA) [2*n*(2*n-1): n in [0..50]]; // Vincenzo Librandi, Jul 26 2011

(Haskell)

a002939 n = (* 2) . a000384

a002939_list = scanl1 (+) a017089_list

-- Reinhard Zumkeller, Jun 08 2015

(Python) a=lambda n: 2*n*(2*n-1) # Indranil Ghosh, Jan 01 2017

CROSSREFS

Sequences from spirals: A001107, A002939, A007742, A033951-A033953, A033954, A033989-A033991, A002943, A033996, A033988.

Sequences on the four axes of the square spiral: Starting at 0: A001107, A033991, A007742, A033954; starting at 1: A054552, A054556, A054567, A033951.

Sequences on the four diagonals of the square spiral: Starting at 0: A002939 = 2*A000384, A016742 = 4*A000290, A002943 = 2*A014105, A033996 = 8*A000217; starting at 1: A054554, A053755, A054569, A016754.

Sequences obtained by reading alternate terms on the X and Y axes and the two main diagonals of the square spiral: Starting at 0: A035608, A156859, A002378 = 2*A000217, A137932 = 4*A002620; starting at 1: A317186, A267682, A002061, A080335.

Cf. A016789, A017041, A017485, A125202.

Cf. numbers of the form n*(n*k-k+4))/2 listed in A226488 (this sequence is the case k=8). - Bruno Berselli, Jun 10 2013

Cf. A017089 (first differences).

Sequence in context: A156021 A067348 * A118239 A249055 A127118 A259127

Adjacent sequences:  A002936 A002937 A002938 * A002940 A002941 A002942

KEYWORD

nonn,nice,easy

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 24 15:37 EDT 2018. Contains 315346 sequences. (Running on oeis4.)