login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A118239
Engel expansion of cosh(1).
4
1, 2, 12, 30, 56, 90, 132, 182, 240, 306, 380, 462, 552, 650, 756, 870, 992, 1122, 1260, 1406, 1560, 1722, 1892, 2070, 2256, 2450, 2652, 2862, 3080, 3306, 3540, 3782, 4032, 4290, 4556, 4830, 5112, 5402, 5700, 6006, 6320, 6642, 6972, 7310, 7656, 8010, 8372
OFFSET
1,2
COMMENTS
Differs from A002939 only in first term.
This sequence is also the Pierce expansion of cos(1). - G. C. Greubel, Nov 14 2016
LINKS
Eric Weisstein's World of Mathematics, Engel Expansion
Eric Weisstein's World of Mathematics, Pierce Expansion
FORMULA
a(n) = A002939(n-1) = 2*(n-1)*(2*n-3) for n>1.
From Colin Barker, Apr 13 2012: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
G.f.: x*(1 - x + 9*x^2 - x^3)/(1-x)^3. (End)
E.g.f.: -6 + x + 2*(3 - 3*x + 2*x^2)*exp(x). - G. C. Greubel, Oct 27 2016
MATHEMATICA
Join[{1}, Table[(2 n - 2) (2 n - 3), {n, 2, 50}]] (* Bruno Berselli, Aug 04 2015 *)
Join[{1}, LinearRecurrence[{3, -3, 1}, {2, 12, 30}, 25]] (* G. C. Greubel, Oct 27 2016 *)
PierceExp[A_, n_] := Join[Array[1 &, Floor[A]], First@Transpose@ NestList[{Floor[1/Expand[1 - #[[1]] #[[2]]]], Expand[1 - #[[1]] #[[2]]]} &, {Floor[1/(A - Floor[A])], A - Floor[A]}, n - 1]]; PierceExp[N[Cos[1] , 7!], 50] (* G. C. Greubel, Nov 14 2016 *)
PROG
(PARI) a(n)=max(4*n^2-10*n+6, 1) \\ Charles R Greathouse IV, Oct 22 2014
(Sage)
A118239 = lambda n: falling_factorial(n*2, 2) if n>0 else 1
print([A118239(n) for n in (0..46)]) # Peter Luschny, Aug 04 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Eric W. Weisstein, Apr 17 2006
STATUS
approved