login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Today, Nov 11 2014, is the 4th anniversary of the launch of the new OEIS web site. 70,000 sequences have been added in these four years, all edited by volunteers. Please make a donation (tax deductible in the US) to help keep the OEIS running.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A002943 2*n*(2*n+1). 44
0, 6, 20, 42, 72, 110, 156, 210, 272, 342, 420, 506, 600, 702, 812, 930, 1056, 1190, 1332, 1482, 1640, 1806, 1980, 2162, 2352, 2550, 2756, 2970, 3192, 3422, 3660, 3906, 4160, 4422, 4692, 4970, 5256, 5550 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

a(n) = number of edges in (n+1) X (n+1) square grid with all horizontal, vertical and diagonal segments filled in. - Asher Auel (asher.auel(AT)reed.edu), Jan 12 2000

Write 0,1,2,... in clockwise spiral; sequence gives numbers on one of 4 diagonals.

The identity (4*n+1)^2-(4*n^2+2*n)*(2)^2 = 1 can be written as A016813(n)^2-a(n)*2^2 = 1. - Vincenzo Librandi, Jul 20 2010 - Nov 25 2012

Starting with "6" = binomial transform of [6, 14, 8, 0, 0, 0,...]. - Gary W. Adamson, Aug 27 2010

The hyper-Wiener index of the crown graph G(n) (n>=3). The crown graph G(n) is the graph with vertex set {x(1), x(2), ..., x(n), y(1), y(2), ..., y(n)} and edge set {(x(i), y(j)): 1<=i,j<=n, i =/ j} (= the complete bipartite graph K(n,n) with horizontal edges removed). The Hosoya-Wiener polynomial of G(n) is n(n-1)(t+t^2)+nt^3. - Emeric Deutsch, Aug 29 2013

Sum of the numbers from n to 3n. - Wesley Ivan Hurt, Oct 27 2014

REFERENCES

R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 2nd ed., 1994, p. 99.

LINKS

T. D. Noe, Table of n, a(n) for n = 0..1000

Eric Weisstein's World of Mathematics, Queen's Tour Graph

Eric Weisstein's World of Mathematics,Crown Graph.

Index to sequences with linear recurrences with constant coefficients, signature (3,-3,1).

FORMULA

a(n) = 4*n^2 + 2*n.

a(n) = A014105(n)*2. - Omar E. Pol, May 21 2008

a(n) = floor((2*n + 1/2)^2). - Reinhard Zumkeller, Feb 20 2010

a(n) = A007494(n) + A173511(n) = A007742(n) + n. - Reinhard Zumkeller, Feb 20 2010

a(n) = 8*n+a(n-1)-2 with a(0)=0. - Vincenzo Librandi, Jul 20 2010

a(n) = 3*a(n-1)-3*a(n-2)+a(n-3). - Harvey P. Dale, Aug 11 2011

a(n+1) = A045896(2*n+1). - Reinhard Zumkeller, Dec 12 2011

G.f.: 2*x*(3+x)/(1-x)^3. - Colin Barker, Jan 14 2012

Sum_{n>=1} 1/a(n) = 1-log(2). Sum_{n>=1} 1/a(n)^2 = 2*log(2)+Pi^2/6-3. - R. J. Mathar, Jan 15 2013

a(n) = A118729(8n+5). - Philippe Deléham, Mar 26 2013

a(n) = 1*A001477(n) + 2*A000217(n) + 3*A000290(n). - J. M. Bergot, Apr 23 2014

a(n) = 2 * A000217(2n) = 2 * A014105(n). - Jon Perry, Oct 27 2014

EXAMPLE

16 17 18 19 ...

15 4 5 6 ...

14 3 0 7 ...

13 2 1 8 ...

MAPLE

A002943 := proc(n)

    2*n*(2*n+1) ;

end proc: # R. J. Mathar, Jun 28 2013

MATHEMATICA

s=0; lst={s}; Do[s+=n++ +6; AppendTo[lst, s], {n, 0, 7!, 8}]; lst (* Vladimir Joseph Stephan Orlovsky, Nov 16 2008 *)

LinearRecurrence[{3, -3, 1}, {0, 6, 20}, 40] (* or *) Table[2n(2n+1), {n, 0, 40}] (* Harvey P. Dale, Aug 11 2011 *)

PROG

(PARI) a(n)=2*n*(2*n+1) \\ Charles R Greathouse IV, Nov 20 2012

(MAGMA) [ 4*n^2+2*n: n in [0..50]]; // Vincenzo Librandi, Nov 25 2012

(Haskell)

a002943 n = 2 * n * (2 * n + 1)  -- Reinhard Zumkeller, Jan 12 2014

CROSSREFS

Cf. A007742, A033954, A046092, A054000, A014105, A007395, A016813.

Same as A033951 except start at 0.

Sequences from spirals: A001107, A002939, A007742, A033951, A033952, A033953, A033954, A033989, A033990, A033991, A002943, A033996, A033988.

Sequence in context: A097811 A143711 A077539 * A068377 A009946 A094274

Adjacent sequences:  A002940 A002941 A002942 * A002944 A002945 A002946

KEYWORD

nonn,easy,nice

AUTHOR

N. J. A. Sloane

EXTENSIONS

Formula fixed by Reinhard Zumkeller, Apr 09 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified December 20 13:53 EST 2014. Contains 252266 sequences.