

A267682


a(n) = 2*a(n1)  2*a(n3) + a(n4) for n > 3, with initial terms 1, 1, 4, 8.


26



1, 1, 4, 8, 15, 23, 34, 46, 61, 77, 96, 116, 139, 163, 190, 218, 249, 281, 316, 352, 391, 431, 474, 518, 565, 613, 664, 716, 771, 827, 886, 946, 1009, 1073, 1140, 1208, 1279, 1351, 1426, 1502, 1581, 1661, 1744, 1828, 1915, 2003, 2094, 2186, 2281, 2377, 2476
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,3


COMMENTS

Also, total number of ON (black) cells after n iterations of the "Rule 201" elementary cellular automaton starting with a single ON (black) cell.


REFERENCES

S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.


LINKS

Robert Price, Table of n, a(n) for n = 0..1000
Eric Weisstein's World of Mathematics, Elementary Cellular Automaton
S. Wolfram, A New Kind of Science
Index entries for sequences related to cellular automata
Index to Elementary Cellular Automata
Index entries for linear recurrences with constant coefficients, signature (2,0,2,1).


FORMULA

G.f.: (1  x + 2*x^2 + 2*x^3) / ((1x)^3*(1+x)).  Colin Barker, Jan 19 2016


MATHEMATICA

rule=201; rows=20; ca=CellularAutomaton[rule, {{1}, 0}, rows1, {All, All}]; (* Start with single black cell *) catri=Table[Take[ca[[k]], {rowsk+1, rows+k1}], {k, 1, rows}]; (* Truncated list of each row *) nbc=Table[Total[catri[[k]]], {k, 1, rows}]; (* Number of Black cells in stage n *) Table[Total[Take[nbc, k]], {k, 1, rows}] (* Number of Black cells through stage n *)
LinearRecurrence[{2, 0, 2, 1}, {1, 1, 4, 8}, 60] (* Vincenzo Librandi, Jan 19 2016 *)


PROG

(PARI) Vec((1x+2*x^2+2*x^3)/((1x)^3*(1+x)) + O(x^100)) \\ Colin Barker, Jan 19 2016


CROSSREFS

Cf. A267679.
Sequences on the four axes of the square spiral: Starting at 0: A001107, A033991, A007742, A033954; starting at 1: A054552, A054556, A054567, A033951.
Sequences on the four diagonals of the square spiral: Starting at 0: A002939 = 2*A000384, A016742 = 4*A000290, A002943 = 2*A014105, A033996 = 8*A000217; starting at 1: A054554, A053755, A054569, A016754.
Sequences obtained by reading alternate terms on the X and Y axes and the two main diagonals of the square spiral: Starting at 0: A035608, A156859, A002378 = 2*A000217, A137932 = 4*A002620; starting at 1: A317186, A267682, A002061, A080335.
Sequence in context: A264599 A122247 A126255 * A194804 A169953 A213035
Adjacent sequences: A267679 A267680 A267681 * A267683 A267684 A267685


KEYWORD

nonn,easy


AUTHOR

Robert Price, Jan 19 2016


EXTENSIONS

Edited by N. J. A. Sloane, Jul 25 2018, replacing definition with simpler formula provided by Colin Barker, Jan 19 2016.


STATUS

approved



