login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A080335 Diagonal in square spiral or maze arrangement of natural numbers. 31
1, 5, 9, 17, 25, 37, 49, 65, 81, 101, 121, 145, 169, 197, 225, 257, 289, 325, 361, 401, 441, 485, 529, 577, 625, 677, 729, 785, 841, 901, 961, 1025, 1089, 1157, 1225, 1297, 1369, 1445, 1521, 1601, 1681, 1765, 1849, 1937, 2025, 2117, 2209, 2305, 2401, 2501 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Interleaves the odd squares A016754 with (1+4n^2), A053755.

Squares of positive integers (plus 1 if n is odd). - Wesley Ivan Hurt, Oct 10 2013

a(n) is the maximum total number of queens that can coexist without attacking each other on an [n+3] X [n+3] chessboard, when the lone queen is in the most vulnerable position on the board. Specifically, the lone queen will placed in any center position, facing an opponent's "army" of size a(n)-1 == A137932(n+2). - Bob Selcoe, Feb 12 2015

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..10000

Index entries for linear recurrences with constant coefficients, signature (2,0,-2,1).

FORMULA

a(n) = (3 + 4*n + 2*n^2 - (-1)^n)/2.

a(2*n) = A016754(n), a(2*n+1) = A053755(n+1).

E.g.f.: exp(x)*(2 + 3*x + x^2) - cosh(x). The sequence 1,1,5,9,... is given by n^2+(1+(-1)^n)/2 with e.g.f. exp(1+x+x^2)*exp(x)-sinh(x). - Paul Barry, Sep 02 2003 and Sep 19 2003

a(0)=1, a(1)=5, a(2)=9, a(3)=17, a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4). - Harvey P. Dale, Jan 29 2012

a(n)+(-1)^n = A137928(n+1). - Philippe Deléham, Feb 17 2012

G.f.: (1 + 3*x - x^2 + x^3)/((1-x)^3*(1+x)). - Colin Barker, Mar 18 2012

a(n) = A000035(n) + A000290(n+1). - Wesley Ivan Hurt, Oct 10 2013

From Bob Selcoe, Feb 12 2015: (Start)

a(n) = A137932(n+2) + 1.

a(n) = (n+1)^2 when n is even; a(n) = (n+1)^2 + 1 when n is odd.

a(n) = A002378(n+2) - A047238(n+3) + 1.

(End)

MAPLE

A080335:=n->(n mod 2) + (n+1)^2; seq(A080335(k), k=0..49); # Wesley Ivan Hurt, Oct 10 2013

MATHEMATICA

With[{nn=60}, Riffle[Range[1, nn, 2]^2, 4*Range[nn]^2+1]] (* or *) LinearRecurrence[ {2, 0, -2, 1}, {1, 5, 9, 17}, 60] (* Harvey P. Dale, Jan 29 2012 *)

Table[(3+4n+2n^2-(-1)^n)/2, {n, 0, 50}] (* Wesley Ivan Hurt, Oct 10 2013 *)

PROG

(MAGMA) [(3+4*n+2*n^2-(-1)^n)/2: n in [0..50]]; // Vincenzo Librandi, Sep 06 2011

CROSSREFS

Cf. A081347, A081348.

Sequences on the four axes of the square spiral: Starting at 0: A001107, A033991, A007742, A033954; starting at 1: A054552, A054556, A054567, A033951.

Sequences on the four diagonals of the square spiral: Starting at 0: A002939 = 2*A000384, A016742 = 4*A000290, A002943 = 2*A014105, A033996 = 8*A000217; starting at 1: A054554, A053755, A054569, A016754.

Sequences obtained by reading alternate terms on the X and Y axes and the two main diagonals of the square spiral: Starting at 0: A035608, A156859, A002378 = 2*A000217, A137932 = 4*A002620; starting at 1: A317186, A267682, A002061, A080335.

Sequence in context: A210978 A211434 A182388 * A089109 A100449 A146284

Adjacent sequences:  A080332 A080333 A080334 * A080336 A080337 A080338

KEYWORD

nonn,easy

AUTHOR

Paul Barry, Mar 19 2003

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 17 16:51 EDT 2019. Contains 328120 sequences. (Running on oeis4.)