login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A156859 The main column of a version of the square spiral. 30
0, 3, 7, 14, 22, 33, 45, 60, 76, 95, 115, 138, 162, 189, 217, 248, 280, 315, 351, 390, 430, 473, 517, 564, 612, 663, 715, 770, 826, 885, 945, 1008, 1072, 1139, 1207, 1278, 1350, 1425, 1501, 1580, 1660, 1743, 1827, 1914, 2002, 2093, 2185, 2280, 2376, 2475, 2575 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

This spiral is sometimes called an Ulam spiral, but square spiral is a better name. - N. J. A. Sloane, Jul 27 2018

It is easy to see that the only two primes in the sequence are 3, 7. Therefore the primes of the version of Ulam spiral are divided into four parts (see also A035608): northeast (NE), northwest (NW), southwest (SW), and southeast (SE).

a(n) = [b(n) U c(n)], being b(n) = 4*n^2 + 3*n and c(n) = 4*n^2 + 7*n + 3 with n>=0. - Paolo P. Lava, Mar 05 2009

Number of pairs (x,y) having x and y of opposite parity with x in {0,...,n} and y in {0,...,2n}. - Clark Kimberling, Jul 02 2012

Partial Sums of A014601(n). - Wesley Ivan Hurt, Oct 11 2013

LINKS

Table of n, a(n) for n=0..50.

E. Apricena, A version of Ulam Spiral divided into four parts.

Marco RipĂ , The n x n x n Points Problem Optimal Solution, viXra.org.

Index entries for linear recurrences with constant coefficients, signature (2,0,-2,1).

FORMULA

a(n) = n^2 + n + floor((n+1)/2) = A002378(n) + A004526(n+1) = A002620(n+1) + 3*A002620(n).

From R. J. Mathar, Feb 20 2009: (Start)

G.f.: x*(3+x)/((1+x)*(1-x)^3).

a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4). (End)

a(n) = -n - 1 + Sum_{j=0..n}Sum_{k=0..j}(2+(-1)^k). - Paolo P. Lava, Mar 05 2009

a(n-1) = floor(n/(e^(1/n)-1)). - Richard R. Forberg, Jun 19 2013

a(n) = A000290(n+1) + A004526(-n-1). - Wesley Ivan Hurt, Jul 15 2013

a(n) + a(n+1) = A014105(n+1). - R. J. Mathar, Jul 15 2013

a(n) = floor(A000384(n+1)/2). [Bruno Berselli, Nov 11 2013]

MAPLE

P:=proc(i) local a, j, k, n; for n from 0 by 1 to i do a:=sum(sum(2-(-1)^k, k=0..j), j=0..n)-n-1; print(a); od; end: P(100); # Paolo P. Lava, Mar 05 2009

A156859:=n->n^2+n+floor((n+1)/2); seq(A156859(k), k=0..100); # Wesley Ivan Hurt, Oct 11 2013

MATHEMATICA

Table[n^2 + n + Floor[(n+1)/2], {n, 0, 100}] (* Wesley Ivan Hurt, Oct 11 2013 *)

CROSSREFS

Cf. A000384, A014601 (first differences), A035608, A115258.

Sequences on the four axes of the square spiral: Starting at 0: A001107, A033991, A007742, A033954; starting at 1: A054552, A054556, A054567, A033951.

Sequences on the four diagonals of the square spiral: Starting at 0: A002939 = 2*A000384, A016742 = 4*A000290, A002943 = 2*A014105, A033996 = 8*A000217; starting at 1: A054554, A053755, A054569, A016754.

Sequences obtained by reading alternate terms on the X and Y axes and the two main diagonals of the square spiral: Starting at 0: A035608, A156859, A002378 = 2*A000217, A137932 = 4*A002620; starting at 1: A317186, A267682, A002061, A080335.

Sequence in context: A249341 A310278 A154772 * A173209 A146931 A176675

Adjacent sequences:  A156856 A156857 A156858 * A156860 A156861 A156862

KEYWORD

nonn,easy

AUTHOR

Emilio Apricena (emilioapricena(AT)yahoo.it), Feb 17 2009

EXTENSIONS

More terms added by Wesley Ivan Hurt, Oct 11 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 21 01:33 EST 2019. Contains 329349 sequences. (Running on oeis4.)