The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A125202 a(n) = 4*n^2 - 6*n + 1. 15
 -1, 5, 19, 41, 71, 109, 155, 209, 271, 341, 419, 505, 599, 701, 811, 929, 1055, 1189, 1331, 1481, 1639, 1805, 1979, 2161, 2351, 2549, 2755, 2969, 3191, 3421, 3659, 3905, 4159, 4421, 4691, 4969, 5255, 5549, 5851, 6161, 6479, 6805, 7139, 7481, 7831, 8189, 8555, 8929, 9311, 9701, 10099, 10505, 10919, 11341 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS Vincenzo Librandi, Table of n, a(n) for n = 1..10000 Index entries for linear recurrences with constant coefficients, signature (3,-3,1). FORMULA a(n) = A125199(n,n-1) for n>1. A003415(a(n)) = A017089(n-1). From Arkadiusz Wesolowski, Dec 25 2011: (Start) a(1) = -1, a(n) = a(n-1) + 8*n - 10. a(n) = 2*a(n-1) - a(n-2) + 8 with a(1) = -1 and a(2) = 5. G.f.: (1 - 4*x + 11*x^2)/(1 - x)^3. (End) a(n) = A002943(n-1) - 1. - Arkadiusz Wesolowski, Feb 15 2012 a(n) = A028387(2n-3), with A028387(-1) = -1. - Vincenzo Librandi, Oct 10 2013 E.g.f.: exp(x)*(1 - 2*x + 4*x^2). - Stefano Spezia, Oct 10 2022 MATHEMATICA f[a_]:=4*a^2-6*a+1; lst={}; Do[AppendTo[lst, f[n]], {n, 0, 5!}]; lst (* Vladimir Joseph Stephan Orlovsky, Jul 14 2009 *) PROG (Magma) [4*n^2 - 6*n + 1: n in [1..60]]; // Vincenzo Librandi, Jul 11 2011 (PARI) a(n)=4*n^2-6*n+1 \\ Charles R Greathouse IV, Sep 28 2015 CROSSREFS Cf. A125199. Cf. A003415, A017089. Cf. A002939, A016789, A017041, A017485, A028387. Cf. A002943, A028387. Sequence in context: A146600 A262997 A031379 * A024841 A155737 A100572 Adjacent sequences: A125199 A125200 A125201 * A125203 A125204 A125205 KEYWORD sign,easy AUTHOR Reinhard Zumkeller, Nov 24 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 29 20:26 EST 2023. Contains 359926 sequences. (Running on oeis4.)