login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A199855
Inverse permutation to A210521.
1
1, 4, 2, 5, 3, 6, 11, 7, 12, 8, 13, 9, 14, 10, 15, 22, 16, 23, 17, 24, 18, 25, 19, 26, 20, 27, 21, 28, 37, 29, 38, 30, 39, 31, 40, 32, 41, 33, 42, 34, 43, 35, 44, 36, 45, 56, 46, 57, 47, 58, 48, 59, 49, 60, 50, 61, 51, 62, 52, 63, 53, 64, 54, 65, 55, 66, 79
OFFSET
1,2
COMMENTS
Permutation of the natural numbers.
a(n) is a pairing function: a function that reversibly maps Z^{+} x Z^{+} onto Z^{+}, where Z^{+} is the set of integer positive numbers.
Enumeration table T(n,k). The order of the list:
T(1,1)=1;
T(2,1), T(2,2), T(1,2), T(1,3), T(3,1),
...
T(2,n-1), T(4,n-3), T(6,n-5), ..., T(n,1),
T(2,n), T(4,n-2), T(6,n-4), ..., T(n,2),
T(1,n), T(3,n-2), T(5,n-4), ..., T(n-1,2),
T(1,n+1), T(3,n-1), T(5,n-3), ..., T(n+1,1),
...
The order of the list elements of adjacent antidiagonals. Let m be a positive integer.
Movement by antidiagonal {T(1,2*m), T(2*m,1)} from T(2,2*m-1) to T(2*m,1) length of step is 2,
movement by antidiagonal {T(1,2*m+1), T(2*m+1,1)} from T(2,2*m) to T(2*m,2) length of step is 2,
movement by antidiagonal {T(1,2*m), T(2*m,1)} from T(1,2*m) to T(2*m-1,2) length of step is 2,
movement by antidiagonal {T(1,2*m+1), T(2*m+1,1)} from T(1,2*m+1) to T(2*m+1,1) length of step is 2.
Table contains:
row 1 is alternation of elements A001844 and A084849,
row 2 is alternation of elements A130883 and A058331,
row 3 is alternation of elements A051890 and A096376,
row 4 is alternation of elements A033816 and A005893,
row 6 is alternation of elements A100037 and A093328;
row 5 accommodates elements A097080 in odd places,
row 7 accommodates elements A137882 in odd places,
row 10 accommodates elements A100038 in odd places,
row 14 accommodates elements A100039 in odd places;
column 1 is A093005 and alternation of elements A000384 and A001105,
column 2 is alternation of elements A046092 and A014105,
column 3 is A105638 and alternation of elements A014106 and A056220,
column 4 is alternation of elements A142463 and A014107,
column 5 is alternation of elements A091823 and A054000,
column 6 is alternation of elements A090288 and |A168244|,
column 8 is alternation of elements A059993 and A033537;
column 7 accommodates elements A071355 in odd places,
column 9 accommodates elements |A147973| in even places,
column 10 accommodates elements A139570 in odd places,
column 13 accommodates elements A130861 in odd places.
FORMULA
T(n,k) = (2*k^2+(4*n-5)*k+2*n^2-3*n+2+(2+(-1)^k)*((1-(k+n-1)*(-1)^i)))/4.
a(n) = (2*j^2+(4*i-5)*j+2*i^2-3*i+2+(2+(-1)^j)*((1-(t+1)*(-1)^i)))/4, where i=n-t*(t+1)/2, j=(t*t+3*t+4)/2-n, t=floor((sqrt(8*n-7) - 1)/2).
EXAMPLE
The start of the sequence as table:
1, 4, 5, 11, 13, 22, 25, 37, 41, 56, 61, ...
2, 3, 7, 9, 16, 19, 29, 33, 46, 51, 67, ...
6, 12, 14, 23, 26, 38, 42, 57, 62, 80, 86, ...
8, 10, 17, 20, 30, 34, 47, 52, 68, 74, 93, ...
15, 24, 27, 39, 43, 58, 63, 81, 87, 108, 115, ...
18, 21, 31, 35, 48, 53, 69, 75, 94, 101. 123, ...
28, 40, 44, 59, 64, 82, 88, 109, 116, 140, 148, ...
32, 36, 49, 54, 70, 76, 95, 102, 124, 132, 157, ...
45, 60, 65, 83, 89, 110, 117, 141, 149, 176, 185, ...
50, 55, 71, 77, 96, 103, 125, 133, 158, 167, 195, ...
66, 84, 90, 111, 118, 142, 150, 177, 186, 216, 226, ...
...
The start of the sequence as triangle array read by rows:
1;
4, 2;
5, 3, 6;
11, 7, 12, 8;
13, 9, 14, 10, 15;
22, 16, 23, 17, 24, 18;
25, 19, 26, 20, 27, 21, 28;
37, 29, 38, 30, 39, 31, 40, 32;
41, 33, 42, 34, 43, 35, 44, 36, 45;
56, 46, 57, 47, 58, 48, 59, 49, 60, 50;
61, 51, 62, 52, 63, 53, 64, 54, 65, 55, 66;
...
The start of the sequence as array read by rows, the length of row r is 4*r-3.
First 2*r-2 numbers are from the row number 2*r-2 of triangle array, located above.
Last 2*r-1 numbers are from the row number 2*r-1 of triangle array, located above.
1;
4, 2, 5, 3, 6;
11, 7,12, 8,13, 9,14,10,15;
22,16,23,17,24,18,25,19,26,20,27,21,28;
37,29,38,30,39,31,40,32,41,33,42,34,43,35,44,36,45;
56,46,57,47,58,48,59,49,60,50,61,51,62,52,63,53,64,54,65,55,66;
...
Row number r contains permutation numbers 4*r-3 from 2*r*r-5*r+4 to 2*r*r-r:
2*r*r-3*r+2,2*r*r-5*r+4, 2*r*r-3*r+3, 2*r*r-5*r+5, 2*r*r-3*r+4, 2*r*r-5*r+6, ..., 2*r*r-3*r+1, 2*r*r-r.
...
PROG
(Python)
t=int((math.sqrt(8*n-7) - 1)/ 2)
i=n-t*(t+1)/2
j=(t*t+3*t+4)/2-n
result=(2*j**2+(4*i-5)*j+2*i**2-3*i+2+(2+(-1)**j)*((1-(t+1)*(-1)**i)))/4
KEYWORD
nonn,tabl
AUTHOR
Boris Putievskiy, Feb 04 2013
STATUS
approved