login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A199854
Primes of the form 1 + m^2 + n^2 with gcd(m,n)=1.
1
3, 11, 59, 83, 107, 131, 179, 227, 251, 347, 443, 467, 563, 587, 971, 1019, 1091, 1187, 1259, 1283, 1307, 1451, 1523, 1571, 1619, 1811, 1907, 1931, 2027, 2099, 2411, 2459, 2579, 2819, 2939, 2963, 3203, 3251, 3299, 3371, 3467, 3491, 3539, 3779, 3803, 3923, 3947
OFFSET
1,1
LINKS
J. Wu, Primes of the form 1 + m^2 + n^2 in short intervals, Proc. Amer. Math. Soc. 126 (1998), 1-8.
EXAMPLE
First such decompositions are 3 = 1 + 1^2 + 1^2, 11 = 1 + 1^2 + 3^2, 59 = 1 + 3^2 + 7^2.
First instance of several decompositions for the same prime: 131 = 1 + 3^2 + 11^2 = 1 + 7^2 + 9^2.
MAPLE
filter:= proc(n) local S, x, y;
if not isprime(n) then return false fi;
S:= map(t -> subs(t, [x, y]), [isolve](x^2 + y^2 = n-1));
ormap(t -> t[1] > 0 and t[2] >= t[1] and igcd(t[1], t[2])=1, S)
end proc:
select(filter, [seq(i, i=3..5000, 2)]); # Robert Israel, Sep 30 2024
PROG
(PARI) hasform(p) = {q = p - 1; for (k = 1, q/2, if (issquare(k) && issquare(q-k) && (gcd(k, q-k)==1), return(1)); ); return(0); }
CROSSREFS
Cf. A056899 (when the decomposition has m=1).
Sequence in context: A164291 A137690 A107007 * A242384 A225809 A267607
KEYWORD
nonn
AUTHOR
Michel Marcus, Dec 22 2012
STATUS
approved