OFFSET
1,2
COMMENTS
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^(i-1) y_i.
The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are also Heinz numbers of partitions whose sum is twice their alternating sum.
EXAMPLE
The terms and their prime indices begin:
1: ()
12: (2,1,1)
63: (4,2,2)
66: (5,2,1)
112: (4,1,1,1,1)
190: (8,3,1)
255: (7,3,2)
325: (6,3,3)
408: (7,2,1,1,1)
434: (11,4,1)
468: (6,2,2,1,1)
609: (10,4,2)
805: (9,4,3)
832: (6,1,1,1,1,1,1)
931: (8,4,4)
946: (14,5,1)
1160: (10,3,1,1,1)
MATHEMATICA
primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
ats[y_]:=Sum[(-1)^(i-1)*y[[i]], {i, Length[y]}];
Select[Range[1000], Total[primeMS[#]]==2*ats[primeMS[#]]&]
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, Nov 23 2021
STATUS
approved