login
A335252
Numbers k such that k and k+2 have the same unitary abundance (A129468).
2
12, 63, 117, 323, 442, 1073, 1323, 1517, 3869, 5427, 6497, 12317, 18419, 35657, 69647, 79919, 126869, 133787, 151979, 154007, 163332, 181427, 184619, 333797, 404471, 439097, 485237, 581129, 621497, 825497, 1410119, 2696807, 3077909, 3751619, 5145341, 6220607
OFFSET
1,1
COMMENTS
Are 12, 442 and 163332 the only even terms?
Are there any unitary abundant numbers (A034683) in this sequence?
No further even terms up to 10^13. - Giovanni Resta, May 30 2020
LINKS
EXAMPLE
12 is a term since 12 and 14 have the same unitary abundance: A129468(12) = usigma(12) - 2*12 = 20 - 24 = -4, and A129468(14) = usigma(14) - 2*14 = 24 - 28 = -4.
MATHEMATICA
usigma[1] = 1; usigma[n_] := Times @@ (1 + Power @@@ FactorInteger[n]); udef[n_] := 2*n - usigma[n]; Select[Range[10^5], udef[#] == udef[# + 2] &]
CROSSREFS
The unitary version of A330901.
Sequence in context: A196335 A349159 A092224 * A212509 A212249 A309372
KEYWORD
nonn
AUTHOR
Amiram Eldar, May 28 2020
STATUS
approved