login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A348617
Numbers whose sum of prime indices is twice their negated alternating sum.
4
1, 10, 39, 88, 115, 228, 259, 306, 517, 544, 620, 783, 793, 870, 1150, 1204, 1241, 1392, 1656, 1691, 1722, 1845, 2369, 2590, 2596, 2775, 2944, 3038, 3277, 3280, 3339, 3498, 3692, 3996, 4247, 4440, 4935, 5022, 5170, 5226, 5587, 5644, 5875, 5936, 6200, 6321
OFFSET
1,2
COMMENTS
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^(i-1) y_i.
The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are also Heinz numbers of partitions whose sum is twice their negated alternating sum.
FORMULA
A056239(a(n)) = -2*A316524(a(n)).
A346698(a(n)) = 3*A346697(a(n)).
EXAMPLE
The terms and their prime indices begin:
1: ()
10: (3,1)
39: (6,2)
88: (5,1,1,1)
115: (9,3)
228: (8,2,1,1)
259: (12,4)
306: (7,2,2,1)
517: (15,5)
544: (7,1,1,1,1,1)
620: (11,3,1,1)
783: (10,2,2,2)
793: (18,6)
870: (10,3,2,1)
1150: (9,3,3,1)
1204: (14,4,1,1)
1241: (21,7)
1392: (10,2,1,1,1,1)
1656: (9,2,2,1,1,1)
1691: (24,8)
MATHEMATICA
primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
ats[y_]:=Sum[(-1)^(i-1)*y[[i]], {i, Length[y]}];
Select[Range[1000], Total[primeMS[#]]==-2*ats[primeMS[#]]&]
CROSSREFS
These partitions are counted by A001523 up to 0's.
An ordered version is A349154, nonnegative A348614, reverse A349155.
The nonnegative version is A349159, counted by A000712 up to 0's.
The reverse nonnegative version is A349160, counted by A006330 up to 0's.
A027193 counts partitions with rev-alt sum > 0, ranked by A026424.
A034871, A097805, A345197 count compositions by alternating sum.
A035363 = partitions with alt sum 0, ranked by A066207, complement A086543.
A056239 adds up prime indices, row sums of A112798, row lengths A001222.
A103919 counts partitions by alternating sum, reverse A344612.
A344607 counts partitions with rev-alt sum >= 0, ranked by A344609.
A346697 adds up odd-indexed prime indices.
A346698 adds up even-indexed prime indices.
Sequence in context: A156674 A360669 A022277 * A188480 A059722 A267748
KEYWORD
nonn
AUTHOR
Gus Wiseman, Nov 26 2021
STATUS
approved