OFFSET
1,2
COMMENTS
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^(i-1) y_i.
The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are also Heinz numbers of partitions whose sum is twice their negated alternating sum.
EXAMPLE
The terms and their prime indices begin:
1: ()
10: (3,1)
39: (6,2)
88: (5,1,1,1)
115: (9,3)
228: (8,2,1,1)
259: (12,4)
306: (7,2,2,1)
517: (15,5)
544: (7,1,1,1,1,1)
620: (11,3,1,1)
783: (10,2,2,2)
793: (18,6)
870: (10,3,2,1)
1150: (9,3,3,1)
1204: (14,4,1,1)
1241: (21,7)
1392: (10,2,1,1,1,1)
1656: (9,2,2,1,1,1)
1691: (24,8)
MATHEMATICA
primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
ats[y_]:=Sum[(-1)^(i-1)*y[[i]], {i, Length[y]}];
Select[Range[1000], Total[primeMS[#]]==-2*ats[primeMS[#]]&]
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, Nov 26 2021
STATUS
approved