login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A303998
Number of ways to write 2*n+1 as p + 2^k + binomial(2*m,m), where p is a prime, and k and m are positive integers.
2
0, 0, 1, 2, 3, 4, 4, 5, 3, 6, 5, 6, 8, 7, 5, 7, 7, 6, 8, 11, 5, 8, 9, 5, 10, 8, 7, 8, 7, 5, 7, 10, 6, 9, 9, 5, 11, 12, 8, 13, 12, 9, 8, 15, 9, 11, 12, 11, 7, 10, 9, 10, 14, 9, 12, 12, 11, 11, 12, 9, 9, 12, 8, 5, 13, 9, 10, 14, 10, 13, 9, 15, 10, 12, 9, 12, 11, 9, 11, 13
OFFSET
1,4
COMMENTS
Conjecture: a(n) > 0 for all n > 2.
This has been verified for n up to 10^9.
LINKS
Zhi-Wei Sun, Mixed sums of primes and other terms, in: Additive Number Theory (edited by D. Chudnovsky and G. Chudnovsky), pp. 341-353, Springer, New York, 2010.
Zhi-Wei Sun, Conjectures on representations involving primes, in: M. Nathanson (ed.), Combinatorial and Additive Number Theory II, Springer Proc. in Math. & Stat., Vol. 220, Springer, Cham, 2017, pp. 279-310. (See also arXiv:1211.1588 [math.NT], 2012-2017.)
EXAMPLE
a(3) = 1 since 2*3+1 = 3 + 2^1 + binomial(2*1,1) with 3 prime.
a(4) = 2 since 2*4+1 = 3 + 2^2 + binomial(2*1,1) = 5 + 2^1 + binomial(2*1,1) with 3 and 5 both prime.
MATHEMATICA
c[n_]:=c[n]=Binomial[2n, n];
tab={}; Do[r=0; k=1; Label[bb]; If[c[k]>2n, Goto[aa]]; Do[If[PrimeQ[2n+1-c[k]-2^m], r=r+1], {m, 1, Log[2, 2n+1-c[k]]}]; k=k+1; Goto[bb]; Label[aa]; tab=Append[tab, r], {n, 1, 80}]; Print[tab]
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, May 04 2018
STATUS
approved