

A065852


Let u be any string of 3 digits from {0,...,n1}; let f(u) = number of distinct primes, not beginning with 0, formed by permuting the digits of u; then a(n) = max_u f(u).


10



1, 2, 3, 4, 4, 5, 3, 5, 4, 6, 4, 6, 4, 5, 5, 5, 4, 6, 5, 6, 5, 6, 5, 6, 5, 6, 5, 6, 5, 6, 5, 6, 6, 6, 6, 6, 5, 6, 6, 6, 5, 6, 6, 6, 6, 5, 5, 6, 6, 6, 6, 6, 5, 6, 6, 6, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 6, 6, 6, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

2,2


COMMENTS

a(192)=5 and a(n)=6 for all 73<n<985.


LINKS

Table of n, a(n) for n=2..81.


EXAMPLE

a(2)=1 because 101 is prime and there are no two 3digit primes with the same number of ones in base two.


MATHEMATICA

c[x_, n_] :=
Module[{},
Length[Select[Permutations[x],
First[#] != 0 && PrimeQ[FromDigits[#, n]] &]]];
A065852[n_] := Module[{i},
Return[ Max[Map[c[#, n] &, DeleteDuplicatesBy[Tuples[Range[0, n  1], 3], Table[Count[#, i], {i, 0, n  1}] &]]]]];
Table[A065852[n], {n, 2, 30}] (* Robert Price, Mar 30 2019 *)


CROSSREFS

Cf. A065843, A065844, A065845, A065846, A065847, A065848, A065849, A065850, A065851, A065853
Sequence in context: A305594 A320778 A058277 * A303998 A319712 A319715
Adjacent sequences: A065849 A065850 A065851 * A065853 A065854 A065855


KEYWORD

base,nonn


AUTHOR

Sascha Kurz, Nov 24 2001


EXTENSIONS

Definition corrected by David A. Corneth, Apr 23 2016


STATUS

approved



