login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A065847
Let u be any string of n digits from {0,...,5}; let f(u) = number of distinct primes, not beginning with 0, formed by permuting the digits of u to a base-6 number; then a(n) = max_u f(u).
11
1, 2, 4, 8, 21, 60, 269, 1147, 4250, 17883, 71966, 342060, 1724337, 8428101, 37186164, 175845403
OFFSET
1,2
EXAMPLE
a(2)=2 because 15 and 51 (written in base 6) are primes (11 and 31).
MAPLE
A065847 := proc(n)
local b, u, udgs, uperm, a;
b :=6 ;
a := 0 ;
for u from b^(n-1) to b^n-1 do
udgs := convert(u, base, b) ;
prs := {} ;
for uperm in combinat[permute](udgs) do
if op(-1, uperm) <> 0 then
p := add( op(i, uperm)*b^(i-1), i=1..nops(uperm)) ;
if isprime(p) then
prs := prs union {p} ;
end if;
end if;
end do:
a := max(a, nops(prs)) ;
end do:
a ;
end proc:
for n from 1 do
print(n, A065847(n)) ;
end do: # R. J. Mathar, Apr 23 2016
MATHEMATICA
c[x_] := Module[{},
Length[Select[Permutations[x],
First[#] != 0 && PrimeQ[FromDigits[#, 6]] &]]];
A065847[n_] := Module[{i},
Return[Max[Map[c, DeleteDuplicatesBy[Tuples[Range[0, 5], n],
Table[Count[#, i], {i, 0, 5}] &]]]]];
Table[A065847[n], {n, 1, 8}] (* Robert Price, Mar 30 2019 *)
PROG
(Python)
from sympy import isprime
from sympy.utilities.iterables import multiset_permutations
from itertools import combinations_with_replacement
def A065847(n):
return max(sum(1 for t in multiset_permutations(s) if t[0] != '0' and isprime(int(''.join(t), 6))) for s in combinations_with_replacement('012345', n)) # Chai Wah Wu, Apr 23 2019
KEYWORD
base,more,nonn
AUTHOR
Sascha Kurz, Nov 24 2001
EXTENSIONS
a(12)-a(13) from Sean A. Irvine, Sep 06 2009
Definition corrected by David A. Corneth, Apr 23 2016
a(14) from Chai Wah Wu, Jun 15 2019
a(15) from Michael S. Branicky, Jun 25 2024
a(16) from Michael S. Branicky, Jul 02 2024
STATUS
approved