

A303997


Number of ways to write 2*n as p + 3^k + binomial(2*m,m), where p is a prime, and k and m are nonnegative integers.


2



0, 1, 2, 2, 3, 4, 4, 4, 4, 4, 5, 4, 6, 6, 4, 6, 8, 6, 5, 8, 5, 5, 8, 5, 6, 10, 4, 4, 7, 5, 5, 7, 6, 4, 8, 4, 6, 11, 6, 5, 10, 8, 7, 9, 11, 7, 10, 7, 4, 11, 9, 9, 9, 10, 8, 12, 9, 9, 11, 9, 5, 8, 8, 4, 11, 8, 7, 8, 8, 7, 10, 8, 7, 6, 7, 5, 10, 9, 7, 12, 8, 5, 7, 9, 8, 9, 8, 6, 8, 11
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,3


COMMENTS

502743678 is the first value of n > 1 with a(n) = 0.


LINKS

ZhiWei Sun, Table of n, a(n) for n = 1..10000
ZhiWei Sun, Mixed sums of primes and other terms, in: Additive Number Theory (edited by D. Chudnovsky and G. Chudnovsky), pp. 341353, Springer, New York, 2010.
ZhiWei Sun, Conjectures on representations involving primes, in: M. Nathanson (ed.), Combinatorial and Additive Number Theory II, Springer Proc. in Math. & Stat., Vol. 220, Springer, Cham, 2017, pp. 279310. (See also arXiv:1211.1588 [math.NT], 20122017.)


EXAMPLE

a(2) = 1 since 2*2 = 2 + 3^0 + binomial(2*0,0) with 2 prime.
a(3) = 2 since 2*3 = 3 + 3^0 + binomial(2*1,1) = 2 + 3^1 + binomial(2*0,0) with 3 and 2 both prime.


MATHEMATICA

c[n_]:=c[n]=Binomial[2n, n];
tab={}; Do[r=0; k=0; Label[bb]; If[c[k]>=2n, Goto[aa]]; Do[If[PrimeQ[2nc[k]3^m], r=r+1], {m, 0, Log[3, 2nc[k]]}]; k=k+1; Goto[bb]; Label[aa]; tab=Append[tab, r], {n, 1, 90}]; Print[tab]


CROSSREFS

Cf. A000040, A000224, A000984, A118955, A156695, A273812, A302982, A302984, A303233, A303234, A303338, A303363, A303389, A303393, A303399, A303428, A303401, A303432, A303434, A303539, A303540, A303541, A303543, A303601, A303637, A303639, A303656, A303660, A303702, A303821, A303932, A303934, A303998.
Sequence in context: A175214 A095395 A029134 * A276646 A029130 A081611
Adjacent sequences: A303994 A303995 A303996 * A303998 A303999 A304000


KEYWORD

nonn


AUTHOR

ZhiWei Sun, May 04 2018


STATUS

approved



