login
A002117
Apéry's number or Apéry's constant zeta(3). Decimal expansion of zeta(3) = Sum_{m >= 1} 1/m^3.
(Formerly M0020)
456
1, 2, 0, 2, 0, 5, 6, 9, 0, 3, 1, 5, 9, 5, 9, 4, 2, 8, 5, 3, 9, 9, 7, 3, 8, 1, 6, 1, 5, 1, 1, 4, 4, 9, 9, 9, 0, 7, 6, 4, 9, 8, 6, 2, 9, 2, 3, 4, 0, 4, 9, 8, 8, 8, 1, 7, 9, 2, 2, 7, 1, 5, 5, 5, 3, 4, 1, 8, 3, 8, 2, 0, 5, 7, 8, 6, 3, 1, 3, 0, 9, 0, 1, 8, 6, 4, 5, 5, 8, 7, 3, 6, 0, 9, 3, 3, 5, 2, 5, 8, 1, 4, 6, 1, 9, 9, 1, 5
OFFSET
1,2
COMMENTS
Sometimes called Apéry's constant.
"A natural question is whether Zeta(3) is a rational multiple of Pi^3. This is not known, though in 1978 R. Apéry succeeded in proving that Zeta(3) is irrational. In Chapter 8 we pointed out that the probability that two random integers are relatively prime is 6/Pi^2, which is 1/Zeta(2). This generalizes to: The probability that k random integers are relatively prime is 1/Zeta(k) ... ." [Stan Wagon]
In 2001 Tanguy Rivoal showed that there are infinitely many odd (positive) integers at which zeta is irrational, including at least one value j in the range 5 <= j <= 21 (refined the same year by Zudilin to 5 <= j <= 11), at which zeta(j) is irrational. See the Rivoal link for further information and references.
The reciprocal of this constant is the probability that three integers chosen randomly using uniform distribution are relatively prime. - Joseph Biberstine (jrbibers(AT)indiana.edu), Apr 13 2005
Also the value of zeta(1,2), the double zeta-function of arguments 1 and 2. - R. J. Mathar, Oct 10 2011
Also the length of minimal spanning tree for large complete graph with uniform random edge lengths between 0 and 1, cf. link to John Baez's comment. - M. F. Hasler, Sep 26 2017
Sum of the inverses of the cubes (A000578). - Michael B. Porter, Nov 27 2017
This number is the average value of sigma_2(n)/n^2 where sigma_2(n) is the sum of the squares of the divisors of n. - Dimitri Papadopoulos, Jan 07 2022
REFERENCES
S. R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, pp. 40-53.
A. Fletcher, J. C. P. Miller, L. Rosenhead, and L. J. Comrie, An Index of Mathematical Tables. Vols. 1 and 2, 2nd ed., Blackwell, Oxford and Addison-Wesley, Reading, MA, 1962, Vol. 1, p. 84.
R. William Gosper, Strip Mining in the Abandoned Orefields of Nineteenth Century Mathematics, Computers in Mathematics (Stanford CA, 1986); Lecture Notes in Pure and Appl. Math., Dekker, New York, 125 (1990), 261-284; MR 91h:11154.
Xavier Gourdon, Analyse, Les Maths en tête, Ellipses, 1994, Exemple 3, page 224.
Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004, Section F17, Series associated with the zeta-function, p. 391.
G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Oxford University Press; 6 edition (2008), pp. 47, 268-269.
Paul Levrie, The Ubiquitous Apéry Number, Math. Intelligencer, Vol. 45, No. 2, 2023, pp. 118-119.
A. A. Markoff, Mémoire sur la transformation de séries peu convergentes en séries très convergentes, Mém. de l'Acad. Imp. Sci. de St. Pétersbourg, XXXVII, 1890.
Paul J. Nahin, In Pursuit of Zeta-3, Princeton University Press, 2021.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Stan Wagon, Mathematica In Action, W. H. Freeman and Company, NY, 1991, page 354.
David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987, p. 33.
A. M. Yaglom and I. M. Yaglom, Challenging Mathematical Problems with Elementary Solutions, Dover (1987), Ex. 92-93.
LINKS
T. Amdeberhan, Faster and Faster convergent series for zeta(3), arXiv:math/9804126 [math.CO], 1998.
Kunihiro Aoki and Ryo Furue, A model for the size distribution of marine microplastics: a statistical mechanics approach, arXiv:2103.10221 [physics.ao-ph], 2021.
Peter Bala, Some series for zeta(3), Nov 2023.
John Baez, Comments about zeta(3), Azimuth Project blog, August 2017.
R. Barbieri, J. A. Mignaco, and E. Remiddi, Electron form factors up to fourth order. I., Il Nuovo Cim. 11A (4) (1972) 824-864, table II (7), (9), (19).
J. Borwein and D. Bradley, Empirically determined Apéry-like formulas for zeta(4n+3), arXiv:math/0505124 [math.CA], 2005.
Mainendra Kumar Dewangan and Subhra Datta, Effective permeability tensor of confined flows with wall grooves of arbitrary shape, J. of Fluid Mechanics (2020) Vol. 891.
L. Euler, On the sums of series of reciprocals, arXiv:math/0506415 [math.HO], 2005-2008.
X. Gourdon and P. Sebah, The Apery's constant: zeta(3).
Brady Haran and Tony Padilla, Apéry's constant (calculated with Twitter), Numberphile video (2017).
W. Janous, Around Apéry's constant, J. Inequ. Pure Appl. Math. 7(1) (2006), #35.
Yasuyuki Kachi and Pavlos Tzermias, Infinite products involving zeta(3) and Catalan's constant, Journal of Integer Sequences, 15 (2012), #12.9.4.
Masato Kobayashi, Integral representations for zeta(3) with the inverse sine function, arXiv:2108.01247 [math.NT], 2021.
M. Kondratiewa and S. Sadov, Markov's transformation of series and the WZ method, arXiv:math/0405592 [math.CA], 2004.
Tobias Kyrion, A closed-form expression for zeta(3), arXiv:2008.05573 [math.GM], 2020.
C. Lupu and D. Orr, Series representations for the Apéry constant zeta(3) involving the values zeta(2n), Ramanujan J. 48(3) (2019), 477-494.
R. J. Mathar, Yet another table of integrals, arXiv:1207.5845 [math.CA], 2012-2014.
G. P. Michon, Roger Apéry, Numericana.
Simon Plouffe, Zeta(2) to Zeta(4096) to 2048 digits each (gzipped file).
A. van der Poorten, A Proof that Euler Missed.
Ernst E. Scheufens, From Fourier series to rapidly convergent series for zeta(3), Mathematics Magazine, Vol. 84, No. 1 (2011), pp. 26-32.
G. Villemin's Almanach of Numbers, Constante d'Apéry (in French).
S. Wedeniwski, The value of zeta(3) to 1000000 places [Gutenberg Project Etext].
S. Wedeniwski, Plouffe's Inverter, Apery's constant to 128000026 decimal digits.
Eric Weisstein's World of Mathematics, Apéry's Constant.
Eric Weisstein's World of Mathematics, Relatively Prime.
H. Wilf, Accelerated series for universal constants, by the WZ method, Discrete Mathematics and Theoretical Computer Science 3(4) (1999), 189-192.
Wenzhe Yang, Apéry's irrationality proof, mirror symmetry and Beukers' modular forms, arXiv:1911.02608 [math.NT], 2019.
Wadim Zudilin, An elementary proof of Apéry's theorem, arXiv:math/0202159 [math.NT], 2002.
FORMULA
Lima gives an approximation to zeta(3) as (236*log(2)^3)/197 - 283/394*Pi*log(2)^2 + 11/394*Pi^2*log(2) + 209/394*log(sqrt(2) + 1)^3 - 5/197 + (93*Catalan*Pi)/197. - Jonathan Vos Post, Oct 14 2009 [Corrected by Wouter Meeussen, Apr 04 2010]
zeta(3) = 5/2*Integral_(x=0..2*log((1+sqrt(5))/2), x^2/(exp(x)-1)) + 10/3*(log((1+sqrt(5))/2))^3. - Seiichi Kirikami, Aug 12 2011
zeta(3) = -4/3*Integral_{x=0..1} log(x)/x*log(1+x) = Integral_{x=0..1} log(x)/x*log(1-x) = -4/7*Integral_{x=0..1} log(x)/x*log((1+x)/(1-x)) = 4*Integral_{x=0..1} 1/x*log(1+x)^2 = 1/2*Integral_{x=0..1} 1/x*log(1-x)^2 = -16/7*Integral_{x=0..Pi/2} x*log(2*cos(x)) = -4/Pi*Integral_{x=0..Pi/2} x^2*log(2*cos(x)). - Jean-François Alcover, Apr 02 2013, after R. J. Mathar
From Peter Bala, Dec 04 2013: (Start)
zeta(3) = (16/7)*Sum_{k even} (k^3 + k^5)/(k^2 - 1)^4.
zeta(3) - 1 = Sum_{k >= 1} 1/(k^3 + 4*k^7) = 1/(5 - 1^6/(21 - 2^6/(55 - 3^6/(119 - ... - (n - 1)^6/((2*n - 1)*(n^2 - n + 5) - ...))))) (continued fraction).
More generally, there is a sequence of polynomials P(n,x) (of degree 2*n) such that
zeta(3) - Sum_{k = 1..n} 1/k^3 = Sum_{k >= 1} 1/( k^3*P(n,k-1)*P(n,k) ) = 1/((2*n^2 + 2*n + 1) - 1^6/(3*(2*n^2 + 2*n + 3) - 2^6/(5*(2*n^2 + 2*n + 7) - 3^6/(7*(2*n^2 + 2*n + 13) - ...)))) (continued fraction). See A143003 and A143007 for details.
Series acceleration formulas:
zeta(3) = (5/2)*Sum_{n >= 1} (-1)^(n+1)/( n^3*binomial(2*n,n) )
= (5/2)*Sum_{n >= 1} P(n)/( (2*n(2*n - 1))^3*binomial(4*n,2*n) )
= (5/2)*Sum_{n >= 1} (-1)^(n+1)*Q(n)/( (3*n(3*n - 1)*(3*n - 2))^3*binomial(6*n,3*n) ), where P(n) = 24*n^3 + 4*n^2 - 6*n + 1 and Q(n) = 9477*n^6 - 11421*n^5 + 5265*n^4 - 1701*n^3 + 558*n^2 - 108*n + 8 (Bala, section 7). (End)
zeta(3) = Sum_{n >= 1} (A010052(n)/n^(3/2)) = Sum_{n >= 1} ( (floor(sqrt(n)) - floor(sqrt(n-1)))/n^(3/2) ). - Mikael Aaltonen, Feb 22 2015
zeta(3) = Product_{k>=1} 1/(1 - 1/prime(k)^3). - Vaclav Kotesovec, Apr 30 2020
zeta(3) = 4*(2*log(2) - 1 - 2*Sum_{k>=2} zeta(2*k+1)/2^(2*k+1)). - Jorge Coveiro, Jun 21 2020
zeta(3) = (4*zeta'''(1/2)*(zeta(1/2))^2-12*zeta(1/2)*zeta'(1/2)*zeta''(1/2)+8*(zeta'(1/2))^3-Pi^3*(zeta(1/2))^3)/(28*(zeta(1/2))^3). - Artur Jasinski, Jun 27 2020
zeta(3) = Sum_{k>=1} H(k)/(k+1)^2, where H(k) = A001008(k)/A002805(k) is the k-th harmonic number. - Amiram Eldar, Jul 31 2020
From Artur Jasinski, Sep 30 2020: (Start)
zeta(3) = (5/4)*Li_3(1/f^2) + Pi^2*log(f)/6 - 5*log(f)^3/6,
zeta(3) = (8/7)*Li_3(1/2) + (2/21)*Pi^2 log(2) - (4/21) log(2)^3, where f is golden ratio (A001622) and Li_3 is the polylogarithm function, formulas published by John Landen in 1780, p. 118. (End)
zeta(3) = (1/2)*Integral_{x=0..oo} x^2/(e^x-1) dx (Gourdon). - Bernard Schott, Apr 28 2021
From Peter Bala, Jan 18 2022: (Start)
zeta(3) = 1 + Sum_{n >= 1} 1/(n^3*(4*n^4 + 1)) = 25/24 + (2!)^4*Sum_{n >= 1} 1/(n^3*(4*n^4 + 1)*(4*n^4 + 2^4)) = 28333/27000 + (3!)^4*Sum_{n >= 1} 1/(n^3*(4*n^4 + 1)*(4*n^4 + 2^4)*(4*n^4 + 3^4)). In general, for k >= 1, we have zeta(3) = r(k) + (k!)^4*Sum_{n >= 1} 1/(n^3*(4*n^4 + 1)*...*(4*n^4 + k^4)), where r(k) is rational.
zeta(3) = (6/7) + (64/7)*Sum_{n >= 1} n/(4*n^2 - 1)^3.
More generally, for k >= 0, it appears that zeta(3) = a(k) + b(k)*Sum_{n >= 1} n/( (4*n^2 - 1)*(4*n^2 - 9)*...*(4*n^2 - (2*k+1)^2) )^3, where a(k) and b(k) are rational.
zeta(3) = (10/7) - (128/7)*Sum_{n >= 1} n/(4*n^2 - 1)^4.
More generally, for k >= 0, it appears that zeta(3) = c(k) + d(k)*Sum_{n >= 1} n/( (4*n^2 - 1)*(4*n^2 - 9)*...*(4*n^2 - (2*k+1)^2) )^4, where c(k) and d(k) are rational. [added Nov 27 2023: for the values of a(k), b(k), c(k) and d(k) see the Bala 2023 link, Sections 8 and 9.]
zeta(3) = 2/3 + (2^13)/(3*7)*Sum_{n >= 1} n^3/(4*n^2 - 1)^6. (End)
zeta(3) = -Psi(2)(1/2)/14 (the second derivative of digamma function evaluated at 1/2). - Artur Jasinski, Mar 18 2022
zeta(3) = -(8*Pi^2/9) * Sum_{k>=0} zeta(2*k)/((2*k+1)*(2*k+3)*4^k) = (2*Pi^2/9) * (log(2) + 2 * Sum_{k>=0} zeta(2*k)/((2*k+3)*4^k)) (Scheufens, 2011, Glasser Math. Comp. 22 1968). - Amiram Eldar, May 28 2022
zeta(3) = Sum_{k>=1} (30*k-11) / (4*(2k-1)*k^3*(binomial(2k,k))^2) (Gosper, 1986 and Richard K. Guy reference). - Bernard Schott, Jul 20 2022
zeta(3) = (4/3)*Integral_{x >= 1} x*log(x)*(1 + log(x))*log(1 + 1/x^x) dx = (2/3)*Integral_{x >= 1} x^2*log(x)^2*(1 + log(x))/(1 + x^x) dx. - Peter Bala, Nov 27 2023
zeta_3(n) = 1/180*(-360*n^3*f(-3, n/4) + Pi^3*(n^4 + 20*n^2 + 16))/(n*(n^2 + 4)), where f(-3, n) = Sum_{k>=1} 1/(k^3*(exp(Pi*k/n) - 1)). Will give at least 1 digit of precision/term, example: zeta_3(5) = 1.202056944732.... - Simon Plouffe, Dec 21 2023
zeat(3) = 1 + (1/2)*Sum_{n >= 1} (2*n + 1)/(n^3*(n + 1)^3) = 5/4 - (1/4)*Sum_{n >= 1} (2*n + 1)/(n^4*(n + 1)^4) = 147/120 + (2/15)*Sum_{n >= 1} (2*n + 1)/(n^5*(n + 1)^5) - (64/15)*Sum_{n >= 1} (n + 1)/(n^5*(n + 2)^5) = 19/16 + (128/21)*Sum_{n >= 1} (n + 1)/(n^6*(n + 2)^6) - (1/21)*Sum_{n >= 1} (2*n + 1)/(n^6*(n + 1)^6). - Peter Bala, Apr 15 2024
Equals 7*Pi^3/180 - 2*Sum_{k>=1} 1/(k^3*(exp(2*Pi*k) - 1)) [Grosswald] (see Finch). - Stefano Spezia, Nov 01 2024
Equals 10*Integral_{x=0..1/2} arcsinh(x)^2/x dx = -5*Integral_{x=0..2*log(phi)} x*log(2*sinh(x/2))dx [Munthe Hjortnaes] (see Finch). - Stefano Spezia, Nov 03 2024
EXAMPLE
1.2020569031595942853997...
MAPLE
# Calculates an approximation with n exact decimal places (small deviation
# in the last digits are possible). Goes back to ideas of A. A. Markoff 1890.
zeta3 := proc(n) local s, w, v, k; s := 0; w := -1; v := 4;
for k from 2 by 2 to 7*n/2 do
w := -w*v/k;
v := v + 8;
s := s + 1/(w*k^3);
od; 20*s; evalf(%, n) end:
zeta3(10000); # Peter Luschny, Jun 10 2020
MATHEMATICA
RealDigits[ N[ Zeta[3], 100] ] [ [1] ]
(* Second program (historical interest): *)
d[n_] := 34*n^3 + 51*n^2 + 27*n + 5; 6/Fold[Function[d[#2-1] - #2^6/#1], 5, Reverse[Range[100]]] // N[#, 108]& // RealDigits // First
(* Jean-François Alcover, Sep 19 2014, after Apéry's continued fraction *)
PROG
(PARI) default(realprecision, 20080); x=zeta(3); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b002117.txt", n, " ", d)); \\ Harry J. Smith, Apr 19 2009
(Maxima) fpprec : 100$ ev(bfloat(zeta(3)))$ bfloat(%); /* Martin Ettl, Oct 21 2012 */
(Python)
from mpmath import mp, apery
mp.dps=109
print([int(z) for z in list(str(apery).replace('.', ''))[:-1]]) # Indranil Ghosh, Jul 08 2017
(Magma) L:=RiemannZeta(: Precision:=100); Evaluate(L, 3); // G. C. Greubel, Aug 21 2018
CROSSREFS
Cf. A197070: 3*zeta(3)/4; A233090: 5*zeta(3)/8; A233091: 7*zeta(3)/8.
Cf. A000578 (cubes).
Cf. sums of inverses: A152623 (tetrahedral numbers), A175577 (octahedral numbers), A295421 (dodecahedral numbers), A175578 (icosahedral numbers).
Sequence in context: A308214 A327371 A037228 * A042970 A158327 A368707
KEYWORD
cons,nonn,nice
EXTENSIONS
More terms from David W. Wilson
Additional comments from Robert G. Wilson v, Dec 08 2000
Quotation from Stan Wagon corrected by N. J. A. Sloane on Dec 24 2005. Thanks to Jose Brox for noticing this error.
Edited by M. F. Hasler, Sep 26 2017
STATUS
approved