login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A233090
Decimal expansion of Sum_{n>=1} (-1)^(n-1)*H(n)/n^2, where H(n) is the n-th harmonic number.
7
7, 5, 1, 2, 8, 5, 5, 6, 4, 4, 7, 4, 7, 4, 6, 4, 2, 8, 3, 7, 4, 8, 3, 6, 3, 5, 0, 9, 4, 4, 6, 5, 6, 2, 4, 4, 2, 2, 8, 1, 1, 6, 4, 3, 2, 7, 1, 2, 8, 1, 1, 8, 0, 1, 1, 2, 0, 1, 6, 9, 7, 2, 2, 0, 8, 8, 6, 4, 8, 8, 7, 8, 6, 1, 6, 4, 4, 5, 6, 8, 1, 3, 6, 6, 5, 3, 4, 9, 2, 1, 0, 0, 5, 8, 3, 4, 5, 3, 6, 3
OFFSET
0,1
REFERENCES
Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 1.6.3, p. 43.
LINKS
R. Barbieri, J. A. Mignaco, and E. Remiddi, Electron form factors up to fourth order. I., Il Nuovo Cim. 11A (4) (1972) 824-864, table II (13)
Philippe Flajolet and Bruno Salvy, Euler Sums and Contour Integral Representations, Experimental Mathematics 7:1 (1998), page 32.
Paul J. Nahin, Inside interesting integrals, Undergrad. Lecture Notes in Physics, Springer (2020), (C5.15)
Michael I. Shamos, A catalog of the real numbers, (2007). See p. 561.
FORMULA
Equals 5*zeta(3)/8.
Equals -Integral_{x=0..1} (log(1+x)*log(1-x)/x)*dx. - Amiram Eldar, May 06 2023
Equals Sum_{m>=1} Sum_{n>=1} (-1)^(m-1)/(m*n*(m + n)) (see Finch). - Stefano Spezia, Nov 02 2024
EXAMPLE
0.7512855644747464283748363509446562442281164327128118011201697220886...
MATHEMATICA
RealDigits[ 5*Zeta[3]/8, 10, 100] // First
CROSSREFS
Cf. A002117 (zeta(3)), A197070 (3*zeta(3)/4), A233091 (7*zeta(3)/8), A076788 (alternating sum with denominator n), A152648 (non-alternating sum with denominator n^2), A152649 (non-alternating sum with denominator n^3), A233033 (alternating sum with denominator n^3).
Sequence in context: A093205 A156536 A110191 * A254177 A377609 A021575
KEYWORD
nonn,cons
AUTHOR
Jean-François Alcover, Dec 04 2013, after the comment by Peter Bala about A233033.
STATUS
approved