login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A233033
Decimal expansion of sum_(n=1..infinity) (-1)^(n-1)*H(n)/n^3 where H(n) is the n-th harmonic number.
2
8, 5, 9, 2, 4, 7, 1, 5, 7, 9, 2, 8, 5, 9, 0, 6, 1, 5, 5, 3, 9, 9, 0, 9, 9, 3, 9, 4, 7, 5, 7, 5, 9, 9, 8, 0, 7, 1, 2, 8, 8, 4, 3, 5, 0, 8, 6, 0, 4, 1, 4, 9, 2, 6, 7, 6, 0, 5, 2, 0, 6, 8, 9, 7, 6, 6, 3, 8, 3, 4, 8, 1, 5, 3, 3, 4, 8, 9, 2, 3, 3, 0, 7, 1, 1, 3, 8, 8, 3, 8, 1, 5, 1, 8, 8, 4, 3, 0, 6, 0
OFFSET
0,1
LINKS
Philippe Flajolet, Bruno Salvy, Euler Sums and Contour Integral Representations, Experimental Mathematics 7:1 (1998) page 32.
FORMULA
Equals 11*Pi^4/360 +1/12*Pi^2*log(2)^2 -log(2)^4/12 -2*Li4(1/2) -7/4*log(2)*zeta(3).
Also, equals 1/2*integral_{z=0..1} (log(z)^2*log(1+z)) / (z*(1+z)) dz.
EXAMPLE
0.859247157928590615539909939475759980712884350860414926760520689766...
MATHEMATICA
RealDigits[ 11*Pi^4/360 + 1/12*Pi^2*Log[2]^2 - Log[2]^4/12 - 2*PolyLog[4, 1/2] - 7/4*Log[2]*Zeta[3], 10, 100] // First
PROG
(PARI) 11*Pi^4/360 + Pi^2*log(2)^2/12 - log(2)^4/12 - 2*polylog(4, 1/2) - 7*log(2)*zeta(3)/4 \\ Charles R Greathouse IV, Aug 27 2014
CROSSREFS
Cf. A076788 (same alternating sum with denominator n), A152648 (non-alternating sum with denominator n^2), A152649 (non-alternating sum with denominator n^3).
Sequence in context: A100126 A330111 A335822 * A244810 A273985 A347195
KEYWORD
nonn,cons
AUTHOR
STATUS
approved