login
A327371
Triangle read by rows where T(n,k) is the number of unlabeled simple graphs with n vertices and exactly k endpoints (vertices of degree 1).
9
1, 1, 0, 1, 0, 1, 2, 0, 2, 0, 5, 1, 3, 1, 1, 16, 6, 7, 2, 3, 0, 78, 35, 25, 8, 7, 2, 1, 588, 260, 126, 40, 20, 6, 4, 0, 8047, 2934, 968, 263, 92, 25, 13, 3, 1, 205914, 53768, 11752, 2434, 596, 140, 47, 12, 5, 0, 10014882, 1707627, 240615, 34756, 5864, 1084, 256, 58, 21, 4, 1
OFFSET
0,7
FORMULA
Column-wise partial sums of A327372.
EXAMPLE
Triangle begins:
1;
1, 0;
1, 0, 1;
2, 0, 2, 0;
5, 1, 3, 1, 1;
16, 6, 7, 2, 3, 0;
78, 35, 25, 8, 7, 2, 1;
588, 260, 126, 40, 20, 6, 4, 0;
8047, 2934, 968, 263, 92, 25, 13, 3, 1;
...
PROG
(PARI)
permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
edges(v) = {sum(i=2, #v, sum(j=1, i-1, gcd(v[i], v[j]))) + sum(i=1, #v, v[i]\2)}
G(n)={sum(k=0, n, my(s=0); forpart(p=k, s+=permcount(p) * 2^edges(p) * prod(i=1, #p, (1 - x^p[i])/(1 - (x*y)^p[i]) + O(x*x^(n-k)))); x^k*s/k!)*(1-x^2*y)/(1-x^2*y^2)}
T(n)={my(v=Vec(G(n))); vector(#v, n, Vecrev(v[n], n))}
my(A=T(10)); for(n=1, #A, print(A[n])) \\ Andrew Howroyd, Jan 22 2021
CROSSREFS
Row sums are A000088.
Row sums without the first column are A141580.
Columns k = 0..2 are A004110, A325115, A325125.
Column k = n is A059841.
Column k = n - 1 is A028242.
The labeled version is A327369.
The covering case is A327372.
Sequence in context: A011420 A035686 A308214 * A037228 A002117 A042970
KEYWORD
nonn,tabl
AUTHOR
Gus Wiseman, Sep 04 2019
EXTENSIONS
Terms a(21) and beyond from Andrew Howroyd, Sep 05 2019
STATUS
approved