login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A327371
Triangle read by rows where T(n,k) is the number of unlabeled simple graphs with n vertices and exactly k endpoints (vertices of degree 1).
9
1, 1, 0, 1, 0, 1, 2, 0, 2, 0, 5, 1, 3, 1, 1, 16, 6, 7, 2, 3, 0, 78, 35, 25, 8, 7, 2, 1, 588, 260, 126, 40, 20, 6, 4, 0, 8047, 2934, 968, 263, 92, 25, 13, 3, 1, 205914, 53768, 11752, 2434, 596, 140, 47, 12, 5, 0, 10014882, 1707627, 240615, 34756, 5864, 1084, 256, 58, 21, 4, 1
OFFSET
0,7
FORMULA
Column-wise partial sums of A327372.
EXAMPLE
Triangle begins:
1;
1, 0;
1, 0, 1;
2, 0, 2, 0;
5, 1, 3, 1, 1;
16, 6, 7, 2, 3, 0;
78, 35, 25, 8, 7, 2, 1;
588, 260, 126, 40, 20, 6, 4, 0;
8047, 2934, 968, 263, 92, 25, 13, 3, 1;
...
PROG
(PARI)
permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
edges(v) = {sum(i=2, #v, sum(j=1, i-1, gcd(v[i], v[j]))) + sum(i=1, #v, v[i]\2)}
G(n)={sum(k=0, n, my(s=0); forpart(p=k, s+=permcount(p) * 2^edges(p) * prod(i=1, #p, (1 - x^p[i])/(1 - (x*y)^p[i]) + O(x*x^(n-k)))); x^k*s/k!)*(1-x^2*y)/(1-x^2*y^2)}
T(n)={my(v=Vec(G(n))); vector(#v, n, Vecrev(v[n], n))}
my(A=T(10)); for(n=1, #A, print(A[n])) \\ Andrew Howroyd, Jan 22 2021
CROSSREFS
Row sums are A000088.
Row sums without the first column are A141580.
Columns k = 0..2 are A004110, A325115, A325125.
Column k = n is A059841.
Column k = n - 1 is A028242.
The labeled version is A327369.
The covering case is A327372.
Sequence in context: A011420 A035686 A308214 * A037228 A002117 A042970
KEYWORD
nonn,tabl
AUTHOR
Gus Wiseman, Sep 04 2019
EXTENSIONS
Terms a(21) and beyond from Andrew Howroyd, Sep 05 2019
STATUS
approved