Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #15 Jan 22 2021 16:48:09
%S 1,1,0,1,0,1,2,0,2,0,5,1,3,1,1,16,6,7,2,3,0,78,35,25,8,7,2,1,588,260,
%T 126,40,20,6,4,0,8047,2934,968,263,92,25,13,3,1,205914,53768,11752,
%U 2434,596,140,47,12,5,0,10014882,1707627,240615,34756,5864,1084,256,58,21,4,1
%N Triangle read by rows where T(n,k) is the number of unlabeled simple graphs with n vertices and exactly k endpoints (vertices of degree 1).
%H Andrew Howroyd, <a href="/A327371/b327371.txt">Table of n, a(n) for n = 0..1325</a> (rows 0..50)
%H Gus Wiseman, <a href="/A327371/a327371.png">The graphs counted in row 5 (isolated vertices not shown).</a>
%F Column-wise partial sums of A327372.
%e Triangle begins:
%e 1;
%e 1, 0;
%e 1, 0, 1;
%e 2, 0, 2, 0;
%e 5, 1, 3, 1, 1;
%e 16, 6, 7, 2, 3, 0;
%e 78, 35, 25, 8, 7, 2, 1;
%e 588, 260, 126, 40, 20, 6, 4, 0;
%e 8047, 2934, 968, 263, 92, 25, 13, 3, 1;
%e ...
%o (PARI)
%o permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
%o edges(v) = {sum(i=2, #v, sum(j=1, i-1, gcd(v[i], v[j]))) + sum(i=1, #v, v[i]\2)}
%o G(n)={sum(k=0, n, my(s=0); forpart(p=k, s+=permcount(p) * 2^edges(p) * prod(i=1, #p, (1 - x^p[i])/(1 - (x*y)^p[i]) + O(x*x^(n-k)))); x^k*s/k!)*(1-x^2*y)/(1-x^2*y^2)}
%o T(n)={my(v=Vec(G(n))); vector(#v, n, Vecrev(v[n], n))}
%o my(A=T(10)); for(n=1, #A, print(A[n])) \\ _Andrew Howroyd_, Jan 22 2021
%Y Row sums are A000088.
%Y Row sums without the first column are A141580.
%Y Columns k = 0..2 are A004110, A325115, A325125.
%Y Column k = n is A059841.
%Y Column k = n - 1 is A028242.
%Y The labeled version is A327369.
%Y The covering case is A327372.
%Y Cf. A055540, A059167, A245797, A294217, A327227, A327370.
%K nonn,tabl
%O 0,7
%A _Gus Wiseman_, Sep 04 2019
%E Terms a(21) and beyond from _Andrew Howroyd_, Sep 05 2019