login
A380219
Number of integer partitions of n whose product is a proper multiple of n.
6
0, 0, 0, 0, 0, 0, 0, 3, 3, 3, 0, 18, 0, 9, 21, 75, 0, 109, 0, 146, 83, 43, 0, 730, 224, 82, 806, 722, 0, 1782, 0, 4254, 733, 258, 1923, 9558, 0, 435, 1875, 16395, 0, 14625, 0, 9857, 33053, 1150, 0, 102070, 19391, 57326, 10157, 30702, 0, 207699, 47925, 200645
OFFSET
1,8
FORMULA
a(n) = A057568(n) - A001055(n).
EXAMPLE
The partition y = (4,3,3,2) has product 72, which is a multiple of 12, so y is counted under a(12).
The a(8) = 3 through a(14) = 9 partitions:
(44) (63) (532) . (66) . (743)
(422) (333) (541) (543) (752)
(2222) (3321) (5221) (642) (761)
(831) (7322)
(4332) (7421)
(4431) (72221)
(5322) (73211)
(6222) (74111)
(6321) (722111)
(6411)
(33222)
(43221)
(43311)
(62211)
(322221)
(332211)
(432111)
(3222111)
MATHEMATICA
Table[Length[Select[IntegerPartitions[n], Divisible[Times@@#, n]&&UnsameQ[Times@@#, n]&]], {n, 30}]
PROG
(PARI) a(n) = my(nb=0); forpart(p=n, my(vp=vecprod(Vec(p))); if (!(vp%n) && (vp>n), nb++)); nb; \\ Michel Marcus, Jan 22 2025
CROSSREFS
The non-proper version is A057568, case of equality A001055.
The case of strict partitions is A379733 - 1.
The case of partitions without 1's is A379734 - 1.
These partitions are ranked by A380216.
A000041 counts integer partitions, strict A000009.
A379666 counts partitions by sum and product.
Counting and ranking multisets by comparing sum and product:
- same: A001055, ranks A301987
- multiple: A057567, ranks A326155
- divisor: A057568 (strict A379733), ranks A326149, see A379319, A380217.
- greater than: A096276 shifted right, ranks A325038
- greater or equal: A096276, ranks A325044
- less than: A114324, ranks A325037, see A318029, A379720
- less or equal: A319005, ranks A379721, see A025147
- different: A379736, ranks A379722, see A111133
Sequence in context: A357073 A019801 A086634 * A066601 A110566 A126066
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jan 21 2025
STATUS
approved