OFFSET
1,8
EXAMPLE
The partition y = (4,3,3,2) has product 72, which is a multiple of 12, so y is counted under a(12).
The a(8) = 3 through a(14) = 9 partitions:
(44) (63) (532) . (66) . (743)
(422) (333) (541) (543) (752)
(2222) (3321) (5221) (642) (761)
(831) (7322)
(4332) (7421)
(4431) (72221)
(5322) (73211)
(6222) (74111)
(6321) (722111)
(6411)
(33222)
(43221)
(43311)
(62211)
(322221)
(332211)
(432111)
(3222111)
MATHEMATICA
Table[Length[Select[IntegerPartitions[n], Divisible[Times@@#, n]&&UnsameQ[Times@@#, n]&]], {n, 30}]
PROG
(PARI) a(n) = my(nb=0); forpart(p=n, my(vp=vecprod(Vec(p))); if (!(vp%n) && (vp>n), nb++)); nb; \\ Michel Marcus, Jan 22 2025
CROSSREFS
The case of strict partitions is A379733 - 1.
The case of partitions without 1's is A379734 - 1.
These partitions are ranked by A380216.
A379666 counts partitions by sum and product.
Counting and ranking multisets by comparing sum and product:
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jan 21 2025
STATUS
approved