OFFSET
0,9
COMMENTS
The matrices (A345197) count the integer compositions of n of length k with alternating sum i, where 1 <= k <= n, and i ranges from -n + 2 to n in steps of 2. The alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^(i-1) y_i.
EXAMPLE
Triangle begins:
1
0 0
0 1 0
0 1 2 0
0 1 2 0 0
0 1 2 3 0 0
0 1 2 6 6 0 0
0 1 2 9 12 0 0 0
0 1 2 12 18 10 0 0 0
0 1 2 15 24 30 20 0 0 0
0 1 2 18 30 60 60 0 0 0 0
0 1 2 21 36 100 120 35 0 0 0 0
0 1 2 24 42 150 200 140 70 0 0 0 0
0 1 2 27 48 210 300 350 280 0 0 0 0 0
0 1 2 30 54 280 420 700 700 126 0 0 0 0 0
MATHEMATICA
ats[y_]:=Sum[(-1)^(i-1)*y[[i]], {i, Length[y]}];
Table[Table[Length[Select[Join@@Permutations/@IntegerPartitions[n, {k}], k==(n+ats[#])/2&]], {k, n}], {n, 0, 15}]
CROSSREFS
The first nonzero element in each column appears to be A001405.
These are the diagonals of the matrices given by A345197.
Antidiagonals of the same matrices are A345907.
Row sums are A345908.
A011782 counts compositions.
A097805 counts compositions by alternating (or reverse-alternating) sum.
Compositions of n, 2n, or 2n+1 with alternating/reverse-alternating sum k:
KEYWORD
nonn,tabl
AUTHOR
Gus Wiseman, Jul 26 2021
STATUS
approved