login
A308183
S_oo, where S_1 = bc, S_n = S_{n-1} a^n S_{n-1} for n > 1, over the alphabet {a,b,c} = {0,1,2}.
1
1, 2, 0, 0, 1, 2, 0, 0, 0, 1, 2, 0, 0, 1, 2, 0, 0, 0, 0, 1, 2, 0, 0, 1, 2, 0, 0, 0, 1, 2, 0, 0, 1, 2, 0, 0, 0, 0, 0, 1, 2, 0, 0, 1, 2, 0, 0, 0, 1, 2, 0, 0, 1, 2, 0, 0, 0, 0, 1, 2, 0, 0, 1, 2, 0, 0, 0, 1, 2, 0, 0, 1, 2, 0, 0, 0, 0, 0, 0, 1, 2, 0, 0, 1, 2, 0, 0, 0, 1, 2, 0, 0, 1, 2, 0, 0, 0, 0, 1, 2, 0, 0, 1, 2, 0, 0, 0, 1, 2, 0, 0
OFFSET
1,2
COMMENTS
This infinite word is recurrent (but not uniformly recurrent) and contains arbitrarily long palindromes, but its set of factors is not closed under reversal.
LINKS
M. Bucci, A. De Luca, A. Glen, L. Q. Zamboni, A connection between palindromic and factor complexity using return words, arXiv:0802.1332 [math.CO], 2008. See Section 4.
CROSSREFS
Cf. A308184.
Sequence in context: A131488 A333361 A363665 * A346632 A230595 A345957
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jun 05 2019
STATUS
approved