OFFSET
0,2
COMMENTS
The zeroth row contains only the empty partition.
A tetrangle is a sequence of finite triangles.
LINKS
EXAMPLE
Tetrangle begins:
0: ()
1: (1)
2: (2)
3: (21)(3)
4: (31)(4)
5: (32)(41)(5)
6: (321)(42)(51)(6)
7: (421)(43)(52)(61)(7)
8: (431)(521)(53)(62)(71)(8)
9: (432)(531)(54)(621)(63)(72)(81)(9)
MATHEMATICA
lexsort[f_, c_]:=OrderedQ[PadRight[{f, c}]];
Table[Sort[Select[IntegerPartitions[n], UnsameQ@@#&], lexsort], {n, 0, 8}]
CROSSREFS
Positions of first appearances are A015724.
Triangle sums are A066189.
Taking revlex instead of lex gives A118457.
The not necessarily strict version is A193073.
The version for reversed partitions is A246688.
The Heinz numbers of these partitions grouped by sum are A246867.
The ordered generalization is A339351.
Taking colex instead of lex gives A344087.
A026793 gives reversed strict partitions in A-S order (sum/length/lex).
A319247 sorts reversed strict partitions by Heinz number.
A329631 sorts strict partitions by Heinz number.
A344090 gives strict partitions in A-S order (sum/length/lex).
Partition/composition orderings: A026791, A026792, A036036, A036037, A048793, A066099, A080577, A112798, A124734, A162247, A211992, A228100, A228351, A228531, A272020, A299755, A296774, A304038, A334301, A334302, A334439, A334442, A335122, A344085, A344086, A344088, A344089.
KEYWORD
nonn,tabf
AUTHOR
Gus Wiseman, May 11 2021
STATUS
approved