login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A335122 Irregular triangle whose reversed rows are all integer partitions in graded reverse-lexicographic order. 7
1, 2, 1, 1, 3, 1, 2, 1, 1, 1, 4, 1, 3, 2, 2, 1, 1, 2, 1, 1, 1, 1, 5, 1, 4, 2, 3, 1, 1, 3, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 6, 1, 5, 2, 4, 1, 1, 4, 3, 3, 1, 2, 3, 1, 1, 1, 3, 2, 2, 2, 1, 1, 2, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 7, 1, 6, 2, 5, 1, 1, 5, 3, 4, 1, 2, 4 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

First differs from A036036 for partitions of 6.

First differs from A334442 for partitions of 6.

Also reversed partitions in reverse-colexicographic order.

LINKS

Table of n, a(n) for n=0..89.

OEIS Wiki, Orderings of partitions

Wikiversity, Lexicographic and colexicographic order

EXAMPLE

The sequence of all reversed partitions begins:

  ()         (1,1,3)        (7)              (8)

  (1)        (1,2,2)        (1,6)            (1,7)

  (2)        (1,1,1,2)      (2,5)            (2,6)

  (1,1)      (1,1,1,1,1)    (1,1,5)          (1,1,6)

  (3)        (6)            (3,4)            (3,5)

  (1,2)      (1,5)          (1,2,4)          (1,2,5)

  (1,1,1)    (2,4)          (1,1,1,4)        (1,1,1,5)

  (4)        (1,1,4)        (1,3,3)          (4,4)

  (1,3)      (3,3)          (2,2,3)          (1,3,4)

  (2,2)      (1,2,3)        (1,1,2,3)        (2,2,4)

  (1,1,2)    (1,1,1,3)      (1,1,1,1,3)      (1,1,2,4)

  (1,1,1,1)  (2,2,2)        (1,2,2,2)        (1,1,1,1,4)

  (5)        (1,1,2,2)      (1,1,1,2,2)      (2,3,3)

  (1,4)      (1,1,1,1,2)    (1,1,1,1,1,2)    (1,1,3,3)

  (2,3)      (1,1,1,1,1,1)  (1,1,1,1,1,1,1)  (1,2,2,3)

We have the following tetrangle of reversed partitions:

                             0

                            (1)

                          (2)(11)

                        (3)(12)(111)

                   (4)(13)(22)(112)(1111)

             (5)(14)(23)(113)(122)(1112)(11111)

  (6)(15)(24)(114)(33)(123)(1113)(222)(1122)(11112)(111111)

MATHEMATICA

revlexsort[f_, c_]:=OrderedQ[PadRight[{c, f}]];

Reverse/@Join@@Table[Sort[IntegerPartitions[n], revlexsort], {n, 0, 8}]

CROSSREFS

Row lengths are A000041.

The version for reversed partitions is A026792.

The version for colex instead of revlex is A026791.

The version for lex instead of revlex is A080576.

The non-reflected version is A080577.

The number of distinct parts is A115623.

Taking Heinz numbers gives A129129.

The version for compositions is A228351.

Partition lengths are A238966.

Partition maxima are A331581.

The length-sensitive version is A334442.

Lexicographically ordered partitions are A193073.

Partitions in colexicographic order are A211992.

Cf. A036036, A036037, A112798, A129129, A228531, A296774, A334301, A334302, A334435, A334436, A334438, A334439.

Sequence in context: A164659 A057898 A094293 * A334442 A036036 A344091

Adjacent sequences:  A335119 A335120 A335121 * A335123 A335124 A335125

KEYWORD

nonn,tabf

AUTHOR

Gus Wiseman, May 24 2020

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 13 07:45 EDT 2021. Contains 344981 sequences. (Running on oeis4.)