The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A238966 The number of distinct primes in divisor lattice in canonical order. 1
 0, 1, 1, 2, 1, 2, 3, 1, 2, 2, 3, 4, 1, 2, 2, 3, 3, 4, 5, 1, 2, 2, 3, 2, 3, 4, 3, 4, 5, 6, 1, 2, 2, 3, 2, 3, 4, 3, 3, 4, 5, 4, 5, 6, 7, 1, 2, 2, 3, 2, 3, 4, 2, 3, 3, 4, 5, 3, 4, 4, 5, 6, 4, 5, 6, 7, 8, 1, 2, 2, 3, 2, 3, 4, 2, 3, 3, 4, 5, 3, 3, 4, 4, 5, 6, 3, 4, 5, 4, 5, 6, 7, 5, 6, 7, 8, 9 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 LINKS Andrew Howroyd, Table of n, a(n) for n = 0..2713 (rows 0..20) S.-H. Cha, E. G. DuCasse, and L. V. Quintas, Graph Invariants Based on the Divides Relation and Ordered by Prime Signatures, arXiv:1405.5283 [math.NT], 2014. FORMULA T(n,k) = A001221(A063008(n,k)). - Andrew Howroyd, Mar 25 2020 EXAMPLE Triangle T(n,k) begins:   0;   1;   1, 2;   1, 2, 3;   1, 2, 2, 3, 4;   1, 2, 2, 3, 3, 4, 5;   1, 2, 2, 3, 2, 3, 4, 3, 4, 5, 6;   ... MAPLE o:= proc(n) option remember; nops(ifactors(n)[2]) end: b:= (n, i)-> `if`(n=0 or i=1, [[1\$n]], [map(x->     [i, x[]], b(n-i, min(n-i, i)))[], b(n, i-1)[]]): T:= n-> map(x-> o(mul(ithprime(i)^x[i], i=1..nops(x))), b(n\$2))[]: seq(T(n), n=0..9);  # Alois P. Heinz, Mar 26 2020 PROG (PARI) Row(n)={apply(s->#s, vecsort([Vecrev(p) | p<-partitions(n)], , 4))} { for(n=0, 8, print(Row(n))) } \\ Andrew Howroyd, Mar 25 2020 CROSSREFS Row sums are A006128. Cf. A036043 in canonical order. Cf. A001221, A063008. Sequence in context: A252230 A036043 A128628 * A275723 A198338 A199086 Adjacent sequences:  A238963 A238964 A238965 * A238967 A238968 A238969 KEYWORD nonn,tabf,changed AUTHOR Sung-Hyuk Cha, Mar 07 2014 EXTENSIONS Offset changed and terms a(50) and beyond from Andrew Howroyd, Mar 25 2020 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 5 06:13 EDT 2020. Contains 333238 sequences. (Running on oeis4.)